
Describing Mathematical Figures with

METAPOST

Jeffrey Clark

Elon University

October 30, 2004

Introduction

Mathematicians use diagrams to convey information, demonstrate algorithms,
and convey geometric relationships. Such diagrams need to accurately convey
all kinds of information. This talk will discuss a program called METAPOST that
is easy to learn and use, and which supports a variety of styles for constructing
diagrams.

METAPOST is a graphics programming language invented by John D. Hobby,
based on the METAFONT system for font creation invented by Donald Knuth.
Using a very concise but clear syntax, it produces output in Postscript (a lan-
guage for printing and displaying documents). I will try in a brief time to
demonstrate a number of different styles for describing diagrams that are pos-
sible in using METAPOST.

This talk is available at http://frodo.elon.edu under the link Presentations.

I will discuss the following different styles of for creating diagrams with
METAPOST:

• Coordinates

• Related Points

• Line Intersections

• Curve Intersections

• Transformations

1

Coordinates

Some mathematical diagrams are based on specific coordinates; for example,
most of the statistical plots that I construct for my classes require the placement
of points at specific coordinates within the plot.

In METAPOST, a point with coordinates x and y is represented as an ordered
pair, (x, y). It is presumed that x and y contain appropriate information about
the units used.

Example: Box-plot

Suppose that I have a data set with the following five-number summary:

Minimum 110
First Quartile 208
Median 373
Third Quartile 579
Maximum 1016

I would like to construct a box-plot for this summary, with proportionate lengths
and a labeled axis underneath it.

The box-plot consists of two whiskers and a box, with the box split at the
median. I will place the bottom of the box at height 100, the whiskers at height
150, and the top of the box at height 200.

In a METAPOST file, Comment lines begin with %.

A METAPOST file can contain several figures. Each begins with a beginfig
command and ends with an endfig command. After all figures are complete, the
file ends with an end command.

In METAPOST, “:=” is used to assign numerical parameters.

To create the graph with given dimensions, we start by defining width and
height and then determine units in the horizontal and vertical dimensions. For
the sake of convenience, we define a macro pt early on to keep track of the units.

The command draw (a, b) -- (c, d); draws a line segment between the points
(a, b) and (c, d). When concluding a closed polygon, the word cycle is used for
the last point.

METAPOST contains for-loops and other control structures.

The dotlabel command is used to place a labeled dot at a point. The decimal
command is used to convert a number to a string label.

2

% boxplot

beginfig(0);

width := 5in; height := 1in;

xmin := 100; xmax := 1100; deltax := 100;

ymin := 0; ymax := 200;

xunit := width/(xmax - xmin);

yunit := height/(ymax - ymin);

def pt(expr x, y) = (x*xunit, y*yunit)

enddef;

% axis

draw pt(xmin, 0) -- pt(xmax, 0);

for x = xmin step deltax until xmax:

dotlabel.bot(decimal(x), pt(x, 0));

endfor;

% boxplot

draw pt(110, 150) -- pt(208, 150);

draw pt(208, 100) -- pt(208, 200)

-- pt(579, 200) -- pt(579, 100) -- cycle;

draw pt(373, 100) -- pt(373, 200);

draw pt(579, 150) -- pt(1016, 150);

endfig;

end;

100 200 300 400 500 600 700 800 900 1000 1100

Related Points

In many diagrams, once one point is specified, the rest of the diagram’s control
points are determined by their relations to each other.

METAPOST will take a system of linear equations relating the coordinates
of the control points, as long as it has a unique solution, and solve for the
coordinates. This provides remarkable freedom in describing a diagram.

Example: Regular Heptagon

We will construct a regular heptagon, with radius (distance from the center to
one of the vertices) equal to 1 inch.

3

We will set the center at the origin, and define all of the other vertices
relative to the center.

Points in METAPOST are commonly identified as z1, z2,

The word origin is a synonym for the coordinates (0, 0).

The command dir(theta) produces a unit vector pointing in the direction
theta, where theta is measured in degrees.

% heptagon.mp

beginfig(0);

theta := 360/7;

radius := 1in;

z0 = origin;

z1 = z0 + dir(90)*radius;

z2 = z0 + dir(90 + theta)*radius;

z3 = z0 + dir(90 + 2*theta)*radius;

z4 = z0 + dir(90 + 3*theta)*radius;

z5 = z0 + dir(90 + 4*theta)*radius;

z6 = z0 + dir(90 + 5*theta)*radius;

z7 = z0 + dir(90 + 6*theta)*radius;

draw z1 -- z2 -- z3 -- z4 -- z5 -- z6 -- z7

-- cycle;

endfig;

end;

4

Example: Nested Rectangles

I would like to construct two nested rectangles, one that is 3 inches by 4 inches,
the other that is 1 inch by 2 inches, with the smaller rectangle nested symmet-
rically within the larger.

Once we specify the location of one of the control points in this diagram,
it is not hard to solve for the locations of the other points, but we will let
METAPOST handle the computations for us.

When working with related points, it is easier to work with points labeled as
z1, z2, z3, etc. Their x-coordinates are x1, x2, x3, etc., and their y-coordinates
are y1, y2, y3, etc.

label is used to place labels in diagrams.

% nested.mp: nested rectangles

beginfig(0);

scale = 0.4;

z1 = origin;

x2 - x1 = 4in*scale; y2 = y1;

x3 = x1; y3 - y1 = 3in*scale;

x4 = x2; y4 = y3;

draw z1 -- z2 -- z4 -- z3 -- cycle;

label.llft("z1", z1);

label.lrt("z2", z2);

label.ulft("z3", z3);

label.urt("z4", z4);

x6 - x5 = 2in*scale; x5 - x1 = x2 - x6;

y7 - y5 = 1in*scale; y5 - y1 = y3 - y7;

x7 = x5; x8 = x6;

y6 = y5; y8 = y7;

draw z5 -- z6 -- z8 -- z7 -- cycle;

label.llft("z5", z5);

label.lrt("z6", z6);

label.ulft("z7", z7);

label.urt("z8", z8);

endfig;

end;

5

z1 z2

z3 z4

z5 z6

z7 z8

Line Intersections

Often control points are determined as the intersections of lines or curves.

In parametric equations, lines are given as P + t ~A, where P is a point on
the line and ~A is a non-zero vector indicating the direction of the line.

In METAPOST, an arbitrary point on such a line is written as P + what-
ever*A. Setting a point equal to two such expressions for intersecting lines is
enough to determine the point.

Example: Triangle with Given Base and Base An-

gles

We will construct a triangle whose base is of length 2 inches, and with base
angles 40◦ and 80◦. The left base angle will point in the direction dir(40), and
the right base angle will point in the direction dir(100) of the supplement of
80◦.

% triangle.mp

beginfig(0);

scale := 0.5;

z1 = origin;

z2 = (2in*scale, 0);

z3 = z1 + whatever*dir(40);

z3 = z2 + whatever*dir(180 - 80);

draw z1 -- z2 -- z3 -- cycle;

dotlabel.llft("z1", z1);

dotlabel.lrt("z2", z2);

dotlabel.top("z3", z3);

6

endfig;

end;

z1 z2

z3

Example: Circumcenter

We will now take the same triangle and find its circumcenter, i.e., the center of
the circle that goes through its vertices.

The center lies on the intersection of the perpendicular bisectors of the three
sides; we need only intersect two of the bisectors.

The command v rotated theta takes the vector v and rotates it by the angle
theta. If we have two distinct points A and B determining a line, their midpoint
is (A + B)/2, and their perpendicular bisector is (A + B)/2 + whatever*(B - A)
rotated 90.

fullcircle is a circle of diameter 1 centered at the origin; fullcircle scaled d
is a circle of diameter d centered at the origin; fullcircle scaled d shifted c is a
circle of diameter d centered at c.

% circumcenter.mp

beginfig(0);

scale := 0.5;

z1 = origin; z2 = (2in*scale, 0);

z3 = z1 + whatever*dir(40);

z3 = z2 + whatever*dir(180 - 80);

dotlabel.llft("z1", z1);

dotlabel.lrt("z2", z2);

dotlabel.top("z3", z3);

z4 = (z1 + z3)/2 + whatever*(z3 - z1) rotated 90;

z4 = (z2 + z3)/2 + whatever*(z3 - z2) rotated 90;

dotlabel.bot("z4", z4);

7

draw z1 -- z2 -- z3 -- cycle;

draw z4 -- z3; draw z4 -- z1; draw z4 -- z2;

draw fullcircle scaled (2*abs(z4 - z3)) shifted z4;

endfig;

end;

z1 z2

z3

z4

Example: Incenter

We will now take the same triangle and find its incenter, i.e., the center of the
circle inscribed in the triangle.

The center lies on the intersection of the angle bisectors of the three sides;
we need only intersect two of the bisectors.

The points of contact between the circle and the triangle are the intersections
of the perpendiculars drawn from the incenter to the sides.

angle(v) yields the direction angle for a vector v. To find the angle bisector
for vectors v and w, we use the direction vector dir((angle(v) + angle(w))/2).

The command r[A, B] finds the point with barycentric coordinate r on the
line determined by A and B. 0[A, B] is A and 1[A, B] is B. Setting a point
equal to whatever[A, B] means that it is on the line determined by A and B.

% incenter.mp

beginfig(0);

scale := 0.3;

z1 = origin; z2 = (2in*scale, 0);

z3 = z1 + whatever*dir(40);

z3 = z2 + whatever*dir(180 - 80);

dotlabel.llft("z1", z1);

dotlabel.lrt("z2", z2);

dotlabel.top("z3", z3);

8

draw z1 -- z2 -- z3 -- cycle;

z4 = z1 + whatever*dir((angle(z3 - z1)

+ angle(z2 - z1))/2);

z4 = z2 + whatever*dir((angle(z1 - z2)

+ angle(z3 - z2))/2);

dotlabel.top("z4", z4);

z12 = whatever[z1, z2];

z12 = z4 + whatever*(z2 - z1) rotated 90;

z13 = whatever[z3, z1];

z13 = z4 + whatever*(z1 - z3) rotated 90;

z23 = whatever[z3, z2];

z23 = z4 + whatever*(z2 - z3) rotated 90;

draw z4 -- z12; draw z4 -- z13; draw z4 -- z23;

draw fullcircle scaled (2*abs(z4 - z12))

shifted z4;

endfig;

end;

z1 z2

z3

z4

Curve Intersections

METAPOST can draw Bezier curves through points to produce many curves
in addition to circles. Once the curves have been specified, METAPOST can
determine any points of intersection.

Example: Fixed Point

We will find the fixed point of the cosine function in the first quadrant by
graphing y = cos(x) and y = x, and letting METAPOST solve for their point of
intersection and its coordinates.

METAPOST treats all angles in degrees, and appends a “d” to the names of
its trigonometric functions accordingly. We can define cosine as cosd(x*pi/180).

Now that we will be trying to find the intersection of two curves, we need to
give them names after declaring them to be paths.

9

A Bezier curve through points P, Q, R is written P .. Q .. R. If there are
many points defining the curve, it is simpler to use a for-loop.

Once the curves C1 and C2 have been specified, we can find their point of
intersection as C1 intersectionpoint C2.

In constructing the label for the point of intersection, we use & to concate-
nate the parts of the label.

% fixedpoint.mp

beginfig(0);

pi := 3.14159; width := 1in;

minimum := 0; maximum := pi/2;

delta := (maximum - minimum)/10;

unit := width/(maximum - minimum);

def pt(expr x, y) = (x*unit, y*unit) enddef;

def f(expr x) = cosd(x*180/pi) enddef;

draw pt(minimum, minimum) -- pt(maximum, minimum);

draw pt(minimum, minimum) -- pt(minimum, maximum);

path curve, line;

curve = pt(minimum, f(minimum))

for x = minimum step delta until maximum:

.. pt(x, f(x)) endfor;

draw curve;

line = pt(minimum, minimum)

-- pt(maximum, maximum);

draw line;

z1 = curve intersectionpoint line;

string lab;

lab = "(" & decimal(x1/unit) & ", "

& decimal(y1/unit) & ")";

dotlabel.rt(lab, z1);

endfig;

end;

(0.73909, 0.73909)

10

Transformations

METAPOST has affine transformations as one of its data types. An affine trans-
formation consists of a linear transformation followed by a translation; in two
dimensions this depends on six parameters.

Every time you specify the image of a point under a transformation, you
provide two linear equations to METAPOST. Therefore a transformation is
specified if you give the images of three points.

rotated and shifted are special cases of affine transformations.

Example: Sierpinski’s Triangle

Sierpinski’s triangle is formed by starting with a solid triangle, and then remov-
ing the middle fourth, and continuing to do so ad infinitum to all remaining
triangles.

We can form finite approximations to Sierpinski’s triangle by defining three
transformations: for each vertex we contract the triangle halfway toward that
vertex.

TupTleft Tright

We will define the finite approximations to Sierpinski’s triangle recursively.
The first approximation is a solid triangle.

11

Successive approximations are found by applying each of the three transforma-
tions separately, and taking the union of the result.

% sierpinksi.mp

beginfig(0);

width := 2in; transform Tleft, Tup, Tright;

z1 = origin; z2 = z1 + width*dir(60);

z3 = z1 + width*right;

z1 transformed Tleft = z1;

z2 transformed Tleft = 1/2[z1, z2];

z3 transformed Tleft = 1/2[z1, z3];

z1 transformed Tup = 1/2[z1, z2];

12

z2 transformed Tup = z2;

z3 transformed Tup = 1/2[z2, z3];

z1 transformed Tright = 1/2[z1, z3];

z2 transformed Tright = 1/2[z2, z3];

z3 transformed Tright = z3;

def sierpinski(expr a, b, c, n) =

if n = 1: fill a--b--c--cycle;

else: sierpinski(a transformed Tleft,

b transformed Tleft,

c transformed Tleft, n - 1);

sierpinski(a transformed Tup,

b transformed Tup,

c transformed Tup, n - 1);

sierpinski(a transformed Tright,

b transformed Tright,

c transformed Tright, n - 1);

fi;

enddef;

sierpinski(z1, z2, z3, 10);

endfig;

end;

13

There are many approaches to constructing mathematical diagrams; which
you use depends on the nature of what you are trying to convey.

Data-oriented diagrams will rely heavily upon coordinates.

Many geometric figures are determined by control points which are most
easily described in relation to each other.

Others involve determining points found on the intersections of linesor curves.

Fractal pictures are transformation oriented; the key to their construction
lies in identifying the correct transformation(s).

METAPOST supports all of these approaches and more.

References

• http://cm.bell-labs.com/who/hobby/MetaPost.html is John Hobby’s home
page for METAPOST and a good source for manuals, tutorials, etc.

• http://tex.loria.fr/prod-graph/zoonekynd/metapost/metapost.html contains
an amazing repertory of METAPOST examples of code and diagrams.

14

