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Abstract

We use the visualization and animation capabilities aple throughout our courses.
Animations are used in presentations in class from fiestr onwards. For example,
animations for Newton’s method and for fixed point itienmtto illustrate how slicing is
used to generate the domain for double integration; to shewtt® error function (for
the collocation method solution of a boundary value proplearies as the collocation
points are changed.

This paper shows how to provide dynamically labelled ations. We start with a
simple animation of parameterized curves where the \Gltlee parameter is displayed
on each frame. Our students in their first semestérsbfyear asked to work individually
or in pairs to attempt an animation assignment. The stsdge required to work in a
group of size 3 plus or minus 1 and choose one of the 5 pishileat are given. These
problems are based on parameterized curves such asthbsgppear when modelling
drug concentration in the blood. The presentation (inldbg and assessment of each
group’s animation almost becomes a tutorial. This actigtyrich does not require
calculus) is popular.

For our second example, we’ll consider the standarduicelcproblem of finding the
dimensions of the rectangle of maximum area thatgsribed in a triangle. Animation
will be used to find the solution in a particular caseisBolution can easily be shown to
be the correct solution for the arbitrary case — aloutus is needed, only some simple
algebra.



Finally, we briefly consider an advanced topic. From third year Finite Element
Methods FEM course, we briefly present an animatiothefcollocation method error
function used to find very simply the “optimal” collt@on points (a very difficult task
analytically).

Introduction

Visualization has a long history (from the ancient €ksy of effective use in
mathematics. However the capability of modern computéivare and calculators to
provide visualization and animation provides new challengesadify our curriculum

and pedagogy to take advantage of these tools. Visualizatiothei teaching of
mathematics was emphasized by the Harvard Consortiuppdsted by a NSF grant)
which introduced and popularised the "rule of three™: Evepjctshould be presented
geometrically, numerically and algebraically, see [8].

In our courses, the visualization and animation capabkiliie Maple are utilized. For
example, Maple is used in a support mode where animatiengresented students to
assist with conceptual development in the case obilHiioning, see [7]. In a few more
advanced courses, we use a “Maple immersion” mode: adhieg and assessment is
done with Maple. For further general discussions afeteeces; as well as details about
a calculus of vector functions course in Maple immersimale, see [3, 5]. In particular,
in these papers, we discuss the use of the visualizaoabilities of Maple to introduce
the slicing idea in simple surface plots and to use libleg diagrams of the domain of
integration to correctly conceptualize double integrati@s iterated or repeated
integration). Animation is also used to illustrate theegation of the domain by slicing.
The volume under a surface is treated as volume o$hed™. Line integrals are
introduced to find the area of walls built above 2D paftising diagrams of 3D domains
are also used to introduce triple integrals.

Our Geometry of Surfaces course is another exampden @dvanced Maple immersion
mode course. This is some classical differential gexymso it is characterized by a lot of
symbolic (exact) computation and visualization — withyvittle numerical evaluation,
see [4].

Introduction to Animation

In their first semester of first year, our studentslgtNonlinear Mathematics where
Maple is used intimately in the course. Animations aesl s class presentations for
topics such as Newton’s method and fixed point iterafdadents also work through a
worksheet on how to construct animations and are theireddo complete an animation
assignment [1]. Animation is introduced in the contextisfializing why the observed
rate of convergence of Newton’s method is differentdifferent values of the parameter

in a parameterized family of functions? X* — ﬂ *+C . It is useful to label each frame of
the animation with the value of the parameter.



The code for dynamically labelled animations is

>restart;

>w th(plots):

>picfn:= cc->plot(2*x"2 - sqrt(x) + cc, x=0..1,
title=cat("c = ",convert(cc,string) ) );

>di splay( [seq(picfn(c/16), c¢=0..16)], insequence=true);

This produces the animation ... of 17 frames. This can'trd@oduced in a static
document, so, in Figure 1, we display an array of 4 ofrdmaes.

Note that the animation can be run and the speed chaampkd,can be shown frame by
frame. The interest here is that to notice the speaiae of ¢ for which the graph just
touches the x axis. This value is one of the c valueghidanimation, but is not one of
the cases displayed in the array of frames in Figuren 1hé original context of this

problem, it is now clear to the students that the case=0Y4 gives a simple zero of the
function and so Newton’s method rate of convergencpidgiratic. However ¢ = 3/8 is a
special case where there is a double zero and so Newtathod converges linearly (i.e.
slowly!).
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Figure 1. Four frames of the dynamically labelled animation.



Therectanglein atriangle problem

A rectangle is to be inscribed in a right triangle hasides of length 6 m and 8 m as
shown in Figure 2. What are the dimensions of the recamaling the maximum area?
We first prepare an animation (not illustrated, althotighcode is given below) of the
rectangle as it's dimensions change and use textplotligplay the values of the
dimensions of the rectangle and its area. This shioevgeometry very well. However we
produce a further extended animation where the usual fpdwea as a function of base of
the rectangle is superimposed on the geometric plot.ig ery effective conceptually,

see Figure 3.

Animation can be used to find the solution (by experimeng particular case (and for
further particular cases). This solution can easilgto@mvn to be the correct solution for
the arbitrary case — no calculus is needed, only sonmesaigebra.
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Figure 2. The rectangle inscribed in a triangle problem.

The code for the rectangle in a triangle problem:

>restart;

>with(plots): wth(plottools):
>tri:=polygon([[0,0],[6,0],[6,8]], color=green,

t hi ckness=3):

This green triangle is defined here and used in the proceslarglabal variable. For the
animations, we also define the number of rectanglesqoizero area) as n.



>n: =20:

# 0<= 1| <=n

>picfn:=proc(ii)

end:

>di spl ay(seq(picfn(i),i=0..n), insequence=true);
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ocal xi, area, rect, tA

Xi:=ii*6/n;
area: =4/ 3*xi *(6-xi);

rect:=rectangle([xi,4/3*xi], [6,0], color=red);
t A =textplot(]

.5,8.8,cat("Wdth = ", convert(eval f(6-xi),string)
.5,8,cat("Height=",convert(eval f(4/3*xi),string)
.5,7.2,cat("Area = ",convert(eval f(area), string)

al i gn=RI GHT, col or=red);

di splay(rect, tri, tA);
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Figure 3. Four frames of the rectangle in a triangle “extefidamimation.



The additional code for the extended animation for ¢éatangle in a triangle problem:
>picfn2: =proc(ii) #ii >0

| ocal xi, xx, area, rect, tA, curve;

Xi:=ii*6/n;

area: =4/ 3*xi *(6-xi);

rect:=rectangle([xi,4/3*xi], [6,0], color=red);

t A =textplot(]

[.5,8.8,cat("Wdth =", convert(eval f(6-xi),string))],
[.5,8,cat("Height=", convert(evalf(4/3*xi),string))],
[.5,7.2,cat("Area = ",convert(evalf(area),string))]],

al i gn=RI GHT, col or =red);
curve: =pl ot (4/ 3*xx*(6-xx), xx=0..xi, views[O0..6,0..12],
| abel s=["",""]):
di splay(rect, tri, tA, curve);
end:
>di spl ay(pi cfn(0), seq(picfn2(i),i=1..n), insequence=true);

Animation of error as collocation pointsvary

The test problem that is used to introduce the collocatietinod is as follows.
Solve the two-point boundary value problem
u"+u=-x
for 0 < x < 1 subject to the boundary conditions
u@0=1landu'(l) =-1
using the collocation method.

Cubic polynomials are chosen as the trial functiongnadl, the boundary conditions are
imposed on u. The residual is calculated by substitutingttiailsfunction into the left
hand side of the differential equation minus the right teitid. The residual is set equal
to zero at 2 collocation points (at x = collPt andollRt). The error (function) varies
according to the choice of the collocation pointsisivery difficult to determine the
“optimal” choice of the collocation points. However wan illustrate how the collocation
method error varies (as the collocation points vang determine the (near) optimal
choice of the collocation points by using the animatitustrated in Figure 4. From the
animation, the best choice for the collocation posts= 7/32 and 1 — 7/32.

For a more accurate determination of the optimal chofcthe collocation points, we
could re-run the animation (not illustrated here) havingotmed in” on the interval
between 6/32 and 8/32, with steps of 1/8 of the previous s32:(ilé step size = 1/256).
This still shows that x = 7/32 (and the symmetric pairt 7/32) is the best choice.

The error, with cubic polynomials and 2 collocation pet collPt and 1-collPt, is



sin(1) sin(x) , (collPt? — collPt +4) (-2 x +x?)

cog 1) collPt* - 2 collPt® + 8 colIPt? — 7 colIPt + 8
. -3x+x3 1

collPt* - 2 collPt® + 8 colIPt? — 7 colIPt + 8

err :=collPt - cogx) +

The code for the collocation method animation: firstee the formula for the err (given
in output form above) and then the following.
>with(plots): with(plottools):
>pt Pl ot : =pt - >scal e(di sk(pt,0.01,color=blue),1,1/3); #pt is
[x.y]
> pi cfn: =proc(cp)
| ocal collocationPts, errCurve;
collocationPts:=[[cp,0],[1-cp,0]];
errCurve: =plot(err(cp), x=0..1,
title=cat("coll pts = ",convert(cp,string),"” & ",
convert(1-cp,string)), titlefont=[TIMES, ROVAN, 16]):
di spl ay(errCurve, map(pt Pl ot, col | ocati onPts));
end:
>di splay( [seq(picfn(cp/32), cp=1..15)], insequence=true);
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Figure 4. Four frames of the collocation method animation.



Conclusion

Modern computer software such as Maple and Mathematit@roduce high quality and
quite complicated visualizations and animations. We hagigised animations used in
innovative ways in our teaching of undergraduate mathem@tigsexperience is that
students respond well and enjoy class presentations amdttatyonork that involves
visualization and animation. The cost of staff resaaitoedevelop these visualization and
animation teaching materials is high — our rule of thusrthat one hour in the clsas or
the lab takes about 10 hours to prepare. However the ehalaeturn is also high — we
will continue to seek opportunities to incorporate visuibreand animation into our
teaching.
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