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Introduction

In what follows, a triple of integers (x,y,z) satisfying the equation
x2-2xycosy+y*=z* (H)

will be referred to as a y-triple. From a geometrical viewpoint, equation (1) represents the
Law of Cosines for a triangle with sides x, y, z. The family of Pythagorean triples can be
considered as the special case of y-triples where y=90°. Just as every Pythagorean triple
can be associated with a right triangle, every y-triple has a y-triangle associated with it as
well. Similarly, just as the set of Pythagorean triangles with integral side lengths can be
thought of as a family of triangles, every y has an associated family of y-triangles. In a
paper presented to the 15" ICTCM [1], the authors developed spreadsheet-based
computational tools that systematically generate y-triples and the associated triangles for
different values of the angular parameter y. It has been shown that such tools allow for
the meaningful introduction of several concepts of elementary number theory to
preservice teachers of secondary mathematics through what can be referred to as the tool
kit approach [2].

This paper is a continuation of the authors’ previous work and it develops new tools that
enable a variety of inquiries into analytic and geometric properties of y-triples
(Pythagorean triples in particular). Analytical inquiries of this paper deal with the
frequency of numbers with special properties, including polygonal and palindromic
numbers, among different families of y-triples. The authors argue that experimental
results and attempts to generalize these results provide pre-teachers of secondary
mathematics with a research-like experience needed for successful teaching of the
standards-based curricula.

The geometrical inquiries discussed in this paper deal with the use of a spreadsheet as a
computational geoboard. First, such a geoboard can be used for the development of a
computerized version of Pick’s theorem [3] that calculates areas of arbitrary n-gons (n <6)
with vertices on lattice points. Experimentation in a guided-discovery learning
environment through the tool kit approach can lead to one’s conjecturing of this less

35



known yet pedagogically useful and mathematically simple theorem. The above-
mentioned constraint on the number of edges does not limit these activities allowing one
to improve technology-enabled pedagogy suggested elsewhere [4] by reducing it to a
single computational medium. Furthermore, secondary pre-teachers can be engaged in
explorations with a classic geometric flavor; for example, locating cosine triples
corresponding to triangles with equal areas or equal perimeters [5]. This paper suggests
that such use of technology in collegiate mathematics education courses has a potential to
enrich mathematical experience of preservice teachers and can result in their appreciation
of the power of technology and usefulness of mathematical concepts as modeling tools in
computational applications.

Polygonal numbers and y-triples

As mentioned elsewhere [1], integer solutions to equation (1) can be generated through
the following formulas

x=q(m’+2mn), y—q[2mn+2(L-p/g)n’], z=q[m*+2(1-p/q)(mn-+n’)]  (2)
where (p, q) and (m, n) are pairs of relatively prime integers, m>n and p/q=cosy. Using
formulas (2) one can systematically generate integral (though not necessarily primitive)
y-triples that can then be explored in terms of possessing special properties.

One of the most ancient mathematical concepts is that of a polygonal number. Having
historical and aesthetic appeal, special cases of polygonal numbers, namely triangular
numbers, have been integrated into the pre-college mathematics curriculum starting in the
early grades. These numbers can be used as tools in many grade-appropriate problem-
solving situations such as finding the number of different sized rectangles on a square
checkerboard problem [6] which, in particular, is equivalent to finding the sums of all
numbers in the corresponding multiplication table.

An interesting exploration is to locate polygonal (triangular, square, pentagonal) numbers
among Pythagorean triples generated in two different ways: first using a set of ancient
formulas known to Euclid and then formulas (2). For example, there are, respectively, 28
and 47 appearances of triangular numbers among the triples generated in the two ways
within the range [2, 20] of generator m. In much the same vein, these (and other) numbers
can be located among other y-triples within the same range of generator m and then
results can be compared.

Palindromic numbers generated from ytriples

There are many interesting number theoretic activities dealing with the properties of y-
triples formulated in terms of their digits that can be significantly enhanced through the
use of spreadsheets. The search for palindromic ytriples is an example of such an activity.
(A palindrome is defined as a whole number that reads the same backward and forward.)
One may argue that the visual identification of palindromes among the strings of ytriples
is an easy task and it does not require the use of a computer, however the incorporation of
computational tools makes the activity more mathematical (i.e., focus on concepts), less
tedious, and more powerful (i.e., the program is efficient). This raises the following
question: How can the mathematical topics of ytriples and palindromes be integrated
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meaningfully using a computer spreadsheet program? With this in mind, spreadsheets can
extend inquiry into the palindromic properties of ytriples by allowing the search for
palindromes among whole number multiples of the elements of these ytriples.

In the spirit of ideas presented in [7] concerning the exploration of parametrically
generated palindromes through a whole number multiplier, a ytriple (x, y, z) will be
referred to below as the k-palindromic of rank one/two/three if exactly one/two/three of
the products kx, ky, kz is a palindrome. For example, the 60°-triple (77, 32, 67) is a 1-
palindromic triple of rank one. Using the spreadsheet-enabled identification of
palindromes [8], preservice teachers can discover that the 120°-triples (65, 88, 133), (69,
91, 139), and (352, 123, 427) are 66-palidromic triples of the rank one, two, and three
respectively. For example, the triple (6669, 66:91, 66-139)=(4554, 6006, 9174) has
exactly two palindromes. Furthermore, they can construct a numeric table and a graph
that represent a numerical function P(k,y, m) — the total number of k-palindromic y-triples
of all three ranks that exist for all generators not greater that m. The teachers then can
make and test conjectures about P(k,y, m) and the palindromic properties of ytriples more
generally using the spreadsheet as an exploratory tool. Clearly, the nature of the
mathematical activity i1s significantly altered through such use of a spreadsheet. The
authors argue that the meaningful use of various spreadsheet-based computational tools is
a valuable mathematical experience for preservice teachers who are required to
incorporate technology in their teaching of mathematics.

The Electronic Geoboard

In an earlier work by the authors [1], a spreadsheet was used to generate a Bride’s Chair
representation of Pythagorean triples. This representation (Figure 1) is dynamic in that it
changes with each new input or with each new Pythagorean triple generated. Since its
vertices lie on lattice points, the area of the square built on the hypotenuse — the tilted
square — could be calculated using Pick’s formula. This application of Pick’s formula
prompted the construction of a more general spreadsheet-based computational geoboard.
The development of such a geoboard will be described in this section.
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Figure 1.The Bride’s Chair Figure 2. Electronic geoboard: First iteration.

The first iteration of the computational geoboard works for acute, right, and many, but
not all, obtuse triangles. The environment (Figure 2) has the following components: (1) a
(graphical) representation of 10x10 geoboard for triangles, (2) an (x,y)-table of the
triangle’s vertices, (3) the incorporation of the Euclidean algorithm in the count of
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boundary pegs (B), and (4) formulas which calculate the number of interior points (I),
and the area (A), of the represented polygon.

The number of lattice points (LP) found on each edge of a polygon can be calculated
through the formula LP=GCD(rise, run)+1 where the rise and run are those of the edge
itself [3]. The Euclidean algorithm calculates the greatest common divisor of the rise and
run of each edge. The sum of the number of lattice points diminished by three is the total
number of boundary points, B, for the polygon.

Once B is known the number of lattice points on the interior of the triangle, I, can be
calculated. Figure 3 shows (a) the interior triangular region drawn with a continuous line,
(b) the rectangular region that circumscribes this triangle, and (c) the three right
triangular regions built between the circumscribed rectangle and the three sides of the
interior triangle. The method of computing the number of interior pegs results in
throwing out the number of lattice points located in each of these three right-tnangular
regions as calculated as [(rise +1)(run +1) — LP]/2 on each region. In Figure 3, these
“extra” lattice points are shown as black squares, the lattice points that are counted as I
are shown in white squares.
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Figure 3. In/exterior pegs. Figure 4. Problematic Triangle.

This “first iteration” of the electronic geoboard works for many triangles, but it breaks
down when the triangle is obtuse and one of its vertices lies in the interior of the larger
circumscribed rectangle as shown in Figure 4. In this case, the three right triangular
regions will not cover all of the lattice points in the circumscribed rectangular region. In
the case of Figure 4, the 6 lattice points covered by white squares are overcounted by the
above methods. However, to correct for this problem, the “middle” vertex (the vertex
with non-maximal valued coordinates) can be used to create four smaller rectangular sub-
regions within the larger circumscribed rectangle as shown in Figure 4. The program then
recognizes and adjusts for the number of lattice points located in the (smaller) rectangular
region (i.e. the region that intersects the interior triangle at only one point and not an edge
of the triangle.)

Moving from triangles to quadrilaterals and, ultimately, n-gons, causes some problems
related to convexity and concavity. However, assuming a quadrilateral is created, an
obvious way to extend the triangular version of the electronic geoboard to n-gons is by
splitting the n-gon into smaller triangular sub-regions and then iteratively applying the
counting methods developed above. If the polygon is convex then an extension from
triangles to more general polygons is unproblematic, if the polygon is concave then some
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of the diagonals may leave the n-gon causing this approach to fail. One solution to this is
to find the center of gravity for the quadrilateral, and then using this point to construct
sub-triangles. Such an approach works for all 5-gons and lower and many hexagons as
well.

To conclude note that using a spreadsheet as a computational geoboard preservice
teachers can generate two-dimensional table of areas of lattice polygons from which the
dependence of A on B and I (that is, Pick’s formula) can be conjectured. There are many
activities and explorations for preservice teachers that relate to the ideas that were
discussed here. Among other things, preservice teachers can generate a table of values
from the electronic geoboard to try to develop Pick’s Formula or they could construct a
simple electronic geoboard themselves.
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