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In the mathematics and statistics curriculums at Hollins University, there is much 
emphasis on the application of concepts to real life problems.  For this purpose, we have 
recently written two interactive web-based calculus projects which use JAVA applets as 
well as downloadable Maple worksheets.  These projects are original and exciting and 
have been well received by both students and colleagues.  
 
Design of a Thrilling Roller Coaster 
 
In this Calculus I project ( www1.hollins.edu/depts/math/hammer/coaster/ ), students use 
differentiation concepts to mathematically model the path of roller coasters and to 
analyze the path of these coasters with regard to peak and valley points (local extreme 
points), points of steepest ascent and descent (inflection points), and “thrill.”   Students 
first apply these ideas to interactive on-line images of real coasters and then extend these 
ideas to their own coaster designs which must satisfy the following coaster restrictions: 

• The total horizontal length of the coaster must be less than 200 feet. 
• The track starts 75 feet above ground and ends at ground level. 
• The track cannot exceed a height of 75 feet or go below ground level. 
• No ascent or descent can be steeper than 80 degrees with the horizontal. 
• The roller coaster must start and end with a zero degree incline. 
• The thrill of a drop is the product of the radian measure of the angle of steepest 

descent with the vertical distance of the drop. 
• The thrill of the coaster is the sum of the thrills of the drops. 
• The path of the coaster must be modeled by a differentiable function. 

 
Students use downloadable Maple worksheets to design and mathematically build the 
straight stretch coasters and to determine the corresponding thrill.  Cubic polynomial 
functions and trigonometric functions are used to model the paths of these single drop 
and several drop coasters.  As a project assignment, students are asked to design a coaster 
which satisfies the given restrictions and that has the maximum thrill.  This optimization 
problem is a challenging one but the interactive coaster windows and the downloadable 
Maple worksheets make it easy (and fun!) for students to experiment with different 
designs. This project was developed by Professor Trish Hammer and student Jessica King 
from Hollins University and Professor Steve Hammer from Virginia Western Community 
College with support from the Hollins faculty/student research fund. 
 
Students follow a step by step procedure which begins with a basic introduction to 
coaster design.  In this introductory section, students gain an overall understanding of the 



methods being used.  An interactive web window and Java applet allow students to 
simply point and click to mark peak and valley points.  The window automatically 
displays the cubic polynomial which fits their marked points along with the slope at the 
steepest points.  Students then use this information to calculate the thrill of each drop and 
the total thrill for the coaster.   
 
In this first section, students do not actually determine mathematical models.  They 
simply see the mathematical models in action.  Figure 1 below shows the automatically 
generated piecewise defined cubic polynomials that fit (in height and slope) the marked 
peak and valley point of one portion of the Steel Dragon.  Students use the displayed 
slopes and y coordinates to calculate thrill. 

 
 

angle1 = arctan(1.254) = 0.8976 radians = 51.4 degrees. 
 
 

  angle2 = arctan(1.0675) = 0.8180 radians = 46.9 degrees. 
 
 

angle3  = arctan(1.34) = 0.9297 radians = 53.3 degrees. 
 
 

angle4 = arctan(0.8579) =0.7091 radians  = 40.6 degrees. 
 
 

Thrill = (217-115)*(0.8976)+(189-121)*(0.9297) = 154.7748 

 

 
 
Next, students begin to mathematically model the path of the coasters.  Data in the form 
of peak and valley points is collected from the live on-line images of real life coasters and 
then students import these data points into a downloadable Maple worksheet. The Maple 
worksheet is complete with the commands (plot, solve, differentiate, do loops) necessary 
for visualization and mathematical computation and analysis of the mathematical models.  
We choose to use actual worksheets rather than Maplets because students at Hollins are 
expected to learn to read, write and understand Maple code. 
 
Four modeling methods are presented.  Students begin with modeling just a single coaster 
hill and then progress to modeling a roller coaster with several hills.  In each case, 
students are asked to use cubic polynomials and then trigonometric functions.  For each 
method, students are given specific step by step instructions that lead them through the 
mathematical modeling process.  At the end of each of the four sections, students are 
asked to model their own coaster path by first creating an interesting design and then by 
specifying peak and valley points on the path.  Their goal is to design a coaster path 
which obeys the given restrictions (regarding height, slope, and differentiability) and 
which is also thrilling.   
 

Figure 1 
(coaster image from www.coastergallery.com)



For example, to mathematically model several drops of the Steel Dragon coaster, students 
enter the collected x- and y-coordinates of the peak and valley points (marked in Figure 
1) into a downloadable Maple worksheet.  They then use Maple commands to fit a cubic 
polynomial (or a trigonometric function) to each consecutive pair of points by creating a 
system of four equations in four unknowns.  Two equations result from the matching of 
y-coordinates and two equations result from the matching of slopes (first derivatives.) 
With Maple, students are able to quickly graph their piecewise mathematical model to see 
if it does in fact match the real coaster image.  Students then use first and second 
derivatives to identify the points of steepest ascent and descent (points of inflection) and 
the corresponding slope at these points.  The slopes are then converted to corresponding 
angles (with the horizontal) and students compute the thrill of each drop of the coaster, 
and finally the total thrill of the coaster.  A student generated mathematical model for the 
Steel Dragon path marked in Figure 1 is shown below in Figure 2. The degree measures 
of the angles of steepest descent and ascent are also displayed. “SAFE” indicates that no 
ascent or descent is steeper than 80 degrees with the horizontal. 
 
 

 
Figure 2 

 
In the last section of the project, students must complete a project assignment.  In this 
assignment, students are asked to create a coaster that satisfies all coaster restrictions and 
that is the most thrilling.  This optimization project is a challenging one.   How do they 
create the “most thrilling” coaster?  Should they use many shorter hills or fewer taller 
hills?  The solution to this optimization problem requires the use of non-peak/valley 
points and non-zero slope conditions, so students must think carefully about how to 
modify their approach and the Maple code.   For this project assignment, students must 
submit mini-technical reports that contain a complete mathematical explanation of their 
optimal design along with the Maple worksheets. 
 
A preliminary version of this project has been used for many years at Hollins University 
and at Virginia Western Community College. In this version, students were shown an 
example of a mathematical model (using Maple) for a roller coaster and then asked to 
model a roller coaster that was most thrilling.  Students who were “good” at Maple found 
the project exciting and were able to experiment easily to find the best coaster design.  
Those students who were not as “good” at Maple struggled, found the project (and Maple 
syntax) frustrating and were just happy to produce one mathematical model. We believe 



the addition of the interactive images that allow point and click experimentation along 
with easily modifiable Maple code will allow all students a quick and easy way to check 
out their “hunches.”  They will then be able concentrate on mathematical concepts and 
not on Maple syntax. 
 
Estimating the Area of US States 
 
Hollins uses an entirely different project in the Calculus II course.  This module involves 
the use of integration approximation techniques for the computation of the area of the 
state of Virginia (http://www1.hollins.edu/depts/math/Prep/area_of_virginia.htm ). The 
module was developed by Hollins faculty as part of an on-line PREP workshop 
sponsored by the MAA and NSF in July 2002, and was recently published in The Journal 
of Mathematics and Its Applications.  The module was co-written by Julie Clark, Trish 
Hammer, and Caren Diefenderfer of Hollins University, and by Steve Hammer, of 
Virginia Western Community College.   
 
In this project, students use a "live" on-line map of Virginia to collect data points along 
the boundaries of the state, and then they import these data points into a downloadable 
Maple worksheet.  This Maple worksheet is complete with the commands (plot, solve, 
integrate, do loops) necessary for visual and mathematical construction of the area 
approximations.   
  
Four approximation methods are presented in this project; they progress from the simpler 
techniques (rectangular and trapezoidal) which are handled by geometric formulas to a 
more complex technique (Simpson's Rule) which involves integration of approximating 
quadratic functions. Instructors may choose to cover the combination of approximation 
methods that seem most appropriate for their course and students in any particular 
semester.  For example, instructors might assign either the left or right rectangular 
approximation method, or both, or they might assign only the Simpson's Rule 
approximation method.   
 
For each method, students are given specific step by step instructions for the area 
calculations based on the collection of 10 data points.  Students are then asked to improve 
their approximations by modifying both their data collection and the corresponding 
Maple8 worksheet to include 30 or more data points.   

For example, to use trapezoids to approximate the area, students are first directed to the 
following web page (http://www1.hollins.edu/depts/math/Prep/VAmap2.htm ) in order to 
learn to use the interactive map of Virginia, and to collect 10 pairs of coordinates to use 
in their subsequent work.  A screen shot of the live map is shown in Figure 3 below.   



Figure 3 

 

Using this Live Map 
• Click anyplace on the map to move the cursor to that point.  
• Notice the readout at the upper right gives the location of the cursor measured in pixels 

from the lower left corner of the map.  
• You can fine tune the location of the cursor by clicking on the four arrows at the left, 

right, top, and bottom of the map. Each click moves the cursor one pixel in the direction 
indicated by the arrow.  

(The map and applet used in the Area of Virginia project were obtained at http://g-
lea.tamu.edu/smap.htm, and http://www.dean.usma.edu/math/people/wattenberg/ 
Lite_Applets_JOMA/afghanistan_distances.html ) 

Students are then directed to open the provided MAPLE worksheet, and to store their 
collected coordinates in the worksheet.  The students use MAPLE to plot their 
coordinates and they are encouraged to re-sample until their plot provides a reasonable 
outline of the state of Virginia.  The worksheet then defines the 10 linear functions used 
to construct the trapezoid approximations.  It also provides code that displays a plot of the 
imported pairs of coordinates, along with the ten approximating trapezoids.  Subsequent 
commands compute the area of each trapezoid, and the sum of all the areas.  The 
trapezoids drawn by MAPLE are actually too large – they include a rectangular region 
below the state as shown in Figure 4 below.  So students are directed to subtract the 
appropriate rectangular area from their trapezoidal sum. 

 

Figure 4 



This MAPLE worksheet also includes commands for using integrals to compute the sum 
of the areas of the individual trapezoids.  Of course such integration is not necessary in 
this case, but will be required when students move to using parabolas in the Simpson’s 
rule section of the project, and so understanding these ideas now is an excellent 
precursor. 

Finally, the students use the map and MAPLE worksheet to determine the number of 
pixels equivalent to 80 miles.  They then determine the conversion factor from square 
pixels to square miles and arrive at a final estimate for the area of Virginia.  Students are 
then asked to re-examine their entire work, summarize it and argue whether their 
approximation provides an over- or under-estimate of the actual area of Virginia.  They 
are then asked to increase the accuracy of their approximation by using more (at least 30) 
trapezoids and by altering the MAPLE worksheet to adjust for the additional trapezoids.  

Once students have worked through as many of the four approximation methods as the 
instructor desires, they are given a final project assignment in which they must 
approximate the area of one of the states California, Illinois, Maryland or North Carolina 
("live" maps are provided).  These states were chosen so that students must think 
carefully about how they should modify and extend the previous (Virginia) procedure.  
For example, the nice horizontal border in these states is the northern (rather than 
southern) border.  Also, each of the four states has some "indentation" in its shape.  We 
expect the end result of the project to be a well-written paper that includes a complete 
explanation and justification of the student's modified procedure as well as complete 
Maple worksheets. 
 
Student solutions for this final project have been quite varied and creative.   We highlight 
just a few of these solutions below.   For the state of California, students begin by using 
the interactive map (Figure 5) to mark points along the boundary.   
 

 
Figure 5 

 
One student chose to sample two distinct sets of boundary points (red and blue) as shown 
in Figure 6 below.  She then used Maple to calculate the area of the red trapezoids and 
the area of the blue trapezoids.  She then subtracted the blue area from the red to arrive at 
a final approximation.  Note that she chose to sample a great many points so as to 
increase her accuracy. 
 



 
Figure 6 

 
Another student chose a similar, but somewhat different approach.  Rather than 
constructing trapezoids with horizontal bases along the x-axis, she turned her trapezoids 
“upside down” and used a line along the north edge of the state as the base of the 
horizontal trapezoids.  (She must have enjoyed using the live-map to sample points 
because she sampled a very large number of them!)  She then calculated blue trapezoid 
area minus red trapezoid area to approximate the area of California. 
 

 
Figure 7 

 
A third student took an entirely different approach to California (see Figure 8). She 
viewed the northern border of the state as a horizontal line and decided that the eastern 
edge could be considered a combination of a vertical and slanted line.  Thus she sampled 
points only along the southwestern edges, used Maple to find the area of a large 
rectangle, and then subtracted from this rectangle’s area the area of a (blue) trapezoid and 
the area of the red trapezoids shown below.  Her approach meant she did not need to use 
the live-map to sample nearly as many coordinate pairs. 
 

 

 

 

 

 

Figure 8 



Figure 9 below shows how one student chose to estimate the area of North Carolina.  She 
wanted to take advantage of both horizontal segments along the borders, so she used 
Simpson’s Rule to estimate the area of the blue region and then subtract the area of the 
blue rectangular region.  Then she found the area of the red rectangular region, used 
Simpson’s rule to find the area of the red region below the state boundary, and subtracted 
this from the area of the red rectangle.  Then she added the areas of the blue and red state 
regions. 

 
Figure 9 

In summary, we were very pleased with the student work on these projects.  Students 
enjoyed the challenges and seemed particularly proud of their creative and colorful 
methods of solution.  We believe their success was due to the organization of the project, 
where they were led carefully through the process for Virginia and through the initial 
Maple code, and then asked to think creatively about how to apply their ideas to other 
irregularly shaped states.  With the availability of the interactive state maps and easy to 
modify Maple code, students found it easy (and fun!) to experiment with many different 
possible solutions and to see (almost immediately) their techniques in action.  They were 
able to focus on the method of solution and not on Maple syntax. 
 
Complete solutions for this module are available from the Hollins Department of 
Mathematics and Statistics.  Contact Phammer@hollins.edu for more details. 
  


