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Reflecting telescope, flashlights, satellite dish antenna, optical illusions like 
“levitating penny” and “inverted light bulb”… What do they have in common? The 
answer is in the title of this paper: parabolic mirror. What is a parabolic mirror? It is a 
mirror whose reflecting surface is in the shape of a paraboloid (surface whose all cross 
sections are parabolas).  Why parabolic mirror? Well, it has a property that the incident 
rays parallel to the axis of the parabola (for example, those that are coming from distant 
objects, like planets, stars, galaxies, or electromagnetic signals from satellites) after being 
reflected from the mirror, pass through the same point – the focus of a parabola.  
 

This paper focuses on the reflection from a parabolic mirror and involves 
activities designed for students enrolled in at least Calculus I.  Part III deals with solving 
differential equations and is suitable for some Calculus II students (where basic 
differential equations topics are covered) or for students taking Differential Equations 
course. Part I is suitable as a classroom activity, while part II is more appropriate as a 
homework assignment or project. Part III might be used as an introduction to Lagrange 
and Clairaut type differential equations (if they are covered in the course). TI92 Plus 
scripts for solving Lagrange and Clairaut types of differential equations are given in the 
Appendix.  
 

In this paper we provide the TI92 Plus script for all activities. The script has been 
selected because it is easy to follow and to modify so students may explore. 
 

This activity involves and helps to develop a number of different skills and 
techniques: implicit differentiation, symbolic manipulations including substitutions, 
graphing families of curves, graphing parametric equations, and solving differential 
equations. 

First let us recall the Law of Reflection that states: The angle of incidence is equal 
to the angle of reflection. In other words, when the light hits the flat surface it reflects 
from the surface in such a way that the angle between the incident ray and normal to the 
surface is the same as the angle between the reflected ray and the normal to the surface. 
The incident ray, the reflected ray and the normal all three lie in the same plane (see Fig. 
1). The law applies to flat surfaces as well as to curved surfaces. 
 



 
Figure 1 - Reflection of  light 

 
Figure 2 - Parabolic mirror 

Now, consider the parabolic mirror (that is, in fact, a paraboloid whose cross 
sections are parabolas). The reflection of rays parallel to the horizontal axis of the 
parabola is illustrated in Fig. 2. Let be a slope of the tangent line to the parabola at the 
point and let n be the slope of the reflected ray. Then, clearly 
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 The problem of studying reflection properties of parabolas can be roughly divided 
into the following three parts:  
 
Part I. A parabolic mirror was constructed so the cross section of the mirror has an 
equation . A series of light waves moves parallel to the axis and are 
reflected off the surface of the parabola. Use TI-92+/TI-89 to graphically verify the 
reflection property of the parabola: 

cbyayx ++= 2

For a series of parallel incident rays, all reflected 
waves pass through the same point,  the focus of the parabola. Also, use TI-92+/TI-89 to 
analytically prove the reflection property of parabola. 
 
Part II. Explore whether other reflecting surfaces have similar properties. For example, 
using TI-92+/TI-89 graphically explore if the spherical mirror whose cross section has 
the equation 22 ycx −−=  possesses the similar reflection property.  
 
Part III. The natural question arises: Is the parabola the only smooth curve with such 
property?  Find all smooth curves with the property that all reflected rays intersect at a 
single point. Without loss of generality we may take that the point of intersection is the 
origin.  
 

 TI92 Plus script for parabolic mirror in Part I can also be used (with minor 
modifications) to study a reflection from a curved mirror, described with general 
equation. Some commands in the script are included to ensure easy transition to more 
general equation and play no role in the case of parabola. The script in Part II points the 
parts that need to be modified when exploring the reflection from a spherical mirror. It is 
always useful to keep one copy of the Part I script and make changes into another copy 
(use CopyVar command to copy text variables).  

   



 

 

 
Figure 3 - Part I TI92 Plus script 
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• Select values for parameters a, b, c, and q, 

appropriate graph and window settings. Prior to 
graphing, review functions , , , 
and . If necessary, make adjustments in the 
Home screen.  
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• Graph functions and shade the regions above 
and below the mirror curves. 

• Delete variables, define another reflected ray 
 and show that the intersection of  

and  is independent on reflected rays. 
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The following calculator screens illustrate the above script. When the script is 
executing it will appear in the split screen (Text and Home screens). Here it is presented 
full Home screen for better appearance. 

   

   
Figure 4 (from left to right) - (a) implicit differentiation; (b) slope of reflected ray; (c) mirror curves; 
(d) review of functions; (e) graphical representation; (f) proof. 

 



Clearly, it was shown (and the graphical observation confirmed) that the reflected 
rays from the series of parallel incident rays pass through the focus of a parabola. Next 
we will investigate if the spherical mirror has the same property. 
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Figure 5 - Part II - parts of script 

The script is the same as in Part I with the following 
changes: 

• Instead of parabola, the mirror curve is the 
semicircle . 0,222 ≤=+ xcyx

• The radius of the circle is 2 and the series of 
incoming rays is adjusted accordingly. 

• After reviewing functions  and , 
prior to graphing, make necessary adjustments: 
First,  that was defined as when(x^2-c^2÷0 
and x÷0, ð(c^2-x^2)) should be redefined by 
typing on the Home screen when(x^2-c^2÷0 and 
x÷0, ð (c^2-x^2),undef)§f1(x). Same correction 
for : redefine it as when(x^2-c^2÷0 and x÷0,  
úð (c^2-x^2),undef) )§f2(x). 
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• Shading needs to be reversed. 
 
 

The following calculator screens illustrate the above script. Again, instead of 
showing a split screen (Text and Home screens), only the full Home screen is shown.  

 

   

   
Figure 6 (from left to right) - (a) implicit differentiation; (b) slope of reflected ray; (c) mirror curves; 
(d)-(e) review of functions and redefining mirror curves; (f) graphical representation 

 
Clearly, spherical mirror does not have the same property as parabolic. So the 

question remains: Is the parabolic mirror unique or do other surfaces exists that reflect a 
series of parallel rays into a single point? 



 

 

 

 

 
Figure 7 – Part III script  
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• The differential equation can be classified as a 
special case of Lagrange differential equation 
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while )(tvy =  follows from the original 
differential equation after the substitutions 

ty ='  and )(tux = . 
 

The following screens are obtained by executing the above script. 
 

   

   
Figure 8 - (from left to right) - (a) derivation of diff. eq.; (b)-(c) solution using DE Solver and solving 
Lagrange equation; (d) parametric solution; (e) graphical representation; (f) equation of a parabola 

Therefore, the parabola is the only curve that exhibits the unique reflection 
property: reflected rays from the series of parallel incident rays all pass through the same 
point. 
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Appendix – Solving Lagrange and Clairaut Differential Equations 
 

 

 

 
Figure 9 – TI92 Plus script – Solving 
Lagrange differential equation 

 

 

 

 

 
Figure 10 - TI92 Plus script – Solving 
Clairaut differential equation  

 

Lagrange Differential Equation: 
• )'()'( ygyxfy += , uuf ≠)( and are 

differentiable functions.  
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Clairaut Differential Equation: 
• )'(' ygxyy += , ) is a differentiable function.  (ug
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• Replace ty ='  and then differentiate with respect 
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dt  implies (c – arbitrary constant) so 
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• The singular solution is given in parametric 
form )(' tgx −= , )()()(' tgtftgy +−=  and it 
represents the envelope of the general solution. 

 
 
 


	Exploring Parabolic Mirrors with TI92 Plus/TI89
	Appendix – Solving Lagrange and Clairaut Differen


