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We offer a Visual Basic program that can be used to compare the Ordinary Least
Squares (OLS) and Total Least Squares (TLS) regression lines. It can be obtained at
www.loyno.edu/~scariano. Here, we introduce the OLS and TLS methods and present a

practical application suitable for classroom presentation.

Ordmary Least Squares
Given known data points {(xi , yi), 1= n} the key idea behind the OLS
method to find the “best-fitting” line, y = mx + b passmg through the points. This criterion
is commonly used to “fit” a line to data, and Gauss was its pioneer. Among a host of
references on this topic, Bjorck [1] gives a complete and exhaustive treatment of least

squares problems.

Figure 1: Ordinary Least Squares: Minimize the Sum of Squares
of Vertical Displacements from line L.
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Letting y, denote the linearly “fitted” or “predicted” ordinate corresponding to
abscissa x;, Gauss reasoned that the “best-fitting” line is obtained by minimizing the sum
of squared distances between the y-values actually observed and those predicted:

Z( V- j}i)z. Since the predicted values are assumed to follow some linear trend, Gauss’s

i=1

rationale requires that we minimize
D(mt)= 3(n-5) =3 (=m0 K

as a function of the variables m and b, denoting the critical values as /7 and b when they

exist.
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r, =(ns;s,)"' Y (x;-%)(y,- ¥) Itisastandard problem in bivariate calculus to find

the constants 7 and 5 that minimize f)(m,b) . These constants are given by

xy

s . '
m=r,, ( % J and b y-mx=y-r, [—y)f Therefore, the OLS “best-fitting” line for a
S, S, o :

| given set of data pomts {(x,),i=12,...,n}is = wx+b.

' Total Least Squares
Let us now consider the same basic problem from a slightly different perspective.
Suppose that a linear relationship Y = mX + b actually exists between the abscissa and
ordinate values, yet neither variable can be measured precisely due to instrumentation,
human, sampling, and other random errors beyond our control. In an error-free world, we
would have Y, = mX, + b ; however, assume that X,and Y, are not observed due to the

persistent presence of errors in both variables. Instead, x,=X,+6;, and y, =Y, +¢, are
actually observed, where &,and ¢; denote the accumulated aggregate random errors

associated with each variable, respectively. Figure 2 depicts this scenario for a single
generic data point (x;, y;) and suggests the use of the Pythagorean Theorem.

Figure 2: Orthogonal Components of the Distance from (x;,y,)to L.
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Reasohing as in the OLS case, we should choose m and b so as to minimize
(mx, + b))

D(m,b) = i(hypotenuse,. )2 = Zn:(, |67 +¢&} )2 = z (v . . In that instance, the

i=1 i=1 i=1

“best-fitting” line in the “total” sense is the one which minimizes the sum of squared
orthogonal distances, rather than just the sum of squared vertical displacements. Of
course, the objective here is to minimize D(m,b) with respect to m and b, so we are to find,
say, m and b such that 15(75'1,5) < ﬁ(m,b) for all (m,b) € R*. Van Huffel and Vandewalle

[2] discuss the concept of total (or orthogonal) least squares extensively Given the
reasoning that lead to equation (1), orthogonal least squares is alternately referred to as the

errors in variables model.
We choose to minimize D(m,b) with respect to m and b using the bivariate Test for

Extrema. The unique solutions minimizing D(m,b) are
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and b =y —mx. Moreover, explicit expressions

om= 5
5.8,y

for the predicted values (X, ;) , the closest point to (x;, y,) on the TLS line, can be
m(y.-—y)+(x,.-x)]+)_c i

obtained. These predicted values are given by ¥, =[ P
m-+

j’iz’;’(ii“'f)'*'?' ,

The propositions that follow next show interesting relationships between the OLS
and TLS methods. Proposition 1 demonstrates that the minimal sum of squares under the
OLS criterion is always at Jeast as large as the minimal sum of squares under the TLS
criterion. This does not, however, mean that the TLS method is “better” than the OLS
method: the defining criteria are simply different. Proposition 2 shows that in practice the
TLS line is always steeper than the OLS line, while Proposition 3 gives upper and lower
bounds for the TLS slope estimate 7z in terms of the OLS slope estimate m . Propositions
4 and 5 are more technical results.

Proposition 1: ﬁ(n‘z,g) > D(#,b) with strict inequality when # # 0.

- Proposition 2: |n”1]2]n“1] If r,g,2 =],then m =m.

-1 -1
Proposition 3: If m#0and r,* #1, (nT' +4r,” —-1) <m< (rh" L —1) )

Proposition 4: Under the TLS criterion, “inverse” regression (of “y on x”’) and
regression of “x on y” are identical whenever r,, is well defined and nonzero.

Proposition S: 1f r, is well-defined and nonzero, then

D DU AR & .
m=§(mx ', ')+\/{—;—(mx -, ')} +1  ,when 1, >0
= (7 ) - l(“‘—“"““2+1 hen i, <0
m—2 N , 2mx m,” ) ,when m, <0,
where i1, and /i1, are the “x on y” and *y on x”” OLS regression slope estimators,
respectively.
SAT Data

As reported by the College Board [3], the data in Table 1 represent Mean SAT/SAT

I mathematics and verbal scores by gender for College-Bound Seniors over the time period -
1972-2000. Although this data set can be analyzed from a variety of perspectives, let us
concentrate on the verbal scores for males and females. Clearly, there is no a priori
justification for labeling either of these variables as “‘explanatory” and the other as
“response”, and there may well be random error in measuring both of these variables.
Nonetheless, the scatterplot in Figure 3, with the outliers (1972-74) removed, shows
positive association between the male (abscissa) and female (ordinate) average verbal
scores, and the point cloud is roughly linear with a positive slope. The regression
equations are OLS : y = 0.6426x+173.9226 and 7LS : y =1.0605x—38.5827, with
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%, =0.6196. The OLS and TLS résidual plots for these models are shown in Figure 4,
which shows no nonrandom patterns. Table 2 predicts female scores from male scores.

Table 1: Mean SAT/SAT I Scores for College-Bound Seniors (1972-2000).
Male Female Male Female Male Female Male Female
Verbal Verbal Math Math Verbal Verbal Math Math
1972 531 529 527 489 1987 512 502 523 481
1973 523 521 525 489 1988 512 499 521 483
1974 524 520 524 488 1989 510 498 523 482
1975 515 509 518 479 1990 505 496 521 483
1976 511 508 520 475 1991 503 495 520 482
1977 509 505 520 474 1992 504 496 521 484
1978 511 503 517 474 1993 504 497 524 484
1979 509 501 516 473 1994 501 497 523 487
1980 506 498 515 473 1995 505 502 525 490
1981 508 496 516 473 1996 507 503 527 492
1982 509 499 516 473 1997 507 503 530 494
1983 508 498 516 474 1998 509 502 531 496
1984 511 498 518 478 1999 509 502 531 495
1985 514 503 522 480 2000 507 504 533 498

1986 515 504 523 479

Figure 3: Scatterplot of SAT/SAT I average verbal scores
(outliers (1972-74) removed).
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Table 2: Predicted Female average verbal score from Male average verbal score.

Male Average Score (X) 500 505 510 515
OLS Predicted Female Average Score (Y) 495.2 498.4 501.7 504.9
TLS Predicted Female Average Score (Y) 491.7 497.0 502.3 507.6

274



Figure 4: Residual plots of SAT/SAT I average verbal scores

Pearson Conslation Coelficient
1= 0619%

Recommendations: - ' ‘
The SAT data set illustrates that there is no clear-cut answer as to whether the OLS

or TLS technique should be preferred in a given application. The method chosen by the
data analyst must be based on a keen understanding of the context of the data as well as the
nature and sources of the errors present in the observations. If, in a given regression
setting, the roles of “explanatory variable” and “response variable” are meaningful and the
explanatory variable can be measured relatively precisely, OLS is the appropriate method
to use. But, when both variables under study are subject to measurement, random, and
other types of errors, the TLS method should be preferred. As with all statistical
techniques, deciding which of these methods to use in practice must be done sensibly, not
in a vacuum. '

Although the total least squares (or errors-in-variables) model has been widely
studied in the literature, far too little has been done at the elementary level to interest
students in this technique. This is quite regrettable for three reasons: (i) the elementary
TLS results are quite accessible to students with a calculus background, (ii) the derivation
of the TLS parameter estimates is an uncontrived use of the bivariate Test for Extrema, -
and, most importantly, (iii) as mathematics educators, we miss the opportunity to
strengthen student understanding of the least squares concept via the exercise of comparing
and contrasting the OLS and TLS techniques. The visual basic program we offer here will
facilitate the analyses, enhance the graphical presentation, and ease the computations.
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