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Computer algebra systems are capable of solving many problems that arise in
linear algebra. The authors have developed a complete set of computer laboratory
projects using Maple in linear algebra. These “hands on” exercises demonstrate Maple’s
ability and versatility in solving a wide variety of applications. The projects progress
from precalculus mathematics to traditional linear algebra topics and then applications.
The sequential titles of these projects are:

(1) Getting Started with Maple, (2) Functions, (3) Matrix Operations, (4) Matrix Form for
Linear Systems of Equations, (5) Row-Reduced Echelon Form for Matrices, (6) Kernel
and Range of Linear Systems, (7) Determinants, (8) Eigenvalues and Eigenvectors, (9)
Mathod of Least Squares Fitting to Data, (10) Introduction to Linear Programaming, (11)
Markov Chains, (12) Other Applications.

The Maple software has several packages, one of which is “linalg”, the linear
algebra package. Several of the functions (commands) in “linalg” will be displayed in
solving select applications of linear algebra. Maple input commands are shown in bold
with “prompt” symbols preceding them. Note: In Maple, colons at the end of a command

line suppresses output, whereas semi-colons are for displaying output.

From Projects 4,5: Solving Systems of Equations
Load Maple’s linear algebra package, which is necessary to use linear algebra functions.
> with(linalg);
Solve three equations in three unknowns using Gaussian elimination.
> equations:=[x-2*y=5, 3*x+y-3*z=-11, 6*y+3*z=0|:
> Ab:= genmatrix(equations , [x,y,z] , flag);

> G:= gausselim(Ab);



> solution:= backsub(G);

For the linear system of equations above, enter the coefficient matrix and right-hand side
vector, separately. Then solve using: (1) linsolve function, (2) inverse of 4 ,

(3) row-reduced echelon form of [4 | b].

> A:=array([[1,-2,0], [3,1,-3] , [0,6,3]]):

> b:=vector([5,-11,0]):

> x:= linsolve(A,b);

> x:=evalm(inverse(A) &* b);

> rref(augment(A,b));

From project 9: Method of Least Squares
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Find the least squares (regression) line y = b, + byx to the data above using;

(1) the least squares formula, (2) linalg’s leastsqrs function

> with(linalg) :

> X:=matrix([ [1,0] , [1,1], [1,2], [1,3], [1,4] ]) :

> Y:=vector(5, [5,4,7,8,8]) :

> B:=inverse(multiply(transpose(X) , X)) &* transpose(X) &* Y :

> evalm(%) ;

> leastsqrs(X,Y) ;

Graph the data points and estimated regression line on the same axes. The “plots”
package is needed for the display function and the “statplots™ package is needed for
scatterplot.

> with(plots) :

> with(statplots) :



> xdata:=[0,1,2,3,4] :

> ydata:= [5,4,7,8,8] :

> Points:= scatterplot(xdata , ydata) :

> Line:= plot(4.4 + x, x=-1..5 , y=--1..10, color=red) :
> display({Points , Line}) ;

From project 10: Linear Programming

Maximize Z = 3x + 5y

subject to: X <4
2y <12
3x+2y <18

and x>0, y=0

The “simplex” package has many functions for use in solving linear programming
problems. Use its feasible command to check if a solution to the above problem exists.
> with(simplex) ;

> constraints:= [x<=4 , 2*y<=12 , 3*x+2*y<=18] :

> feasible(constraints , nonnegative) ;

Place this problem into matrix form via a simplex table(including slack variables SLI,
~SL2, SL3) and manually apply the simplex algorithm.

> with(linalg) :

> A:= matrix(4,5, [1,0,1,0,0, 0,2,0,1,0, 1,2,0,0,1, -3,-5,0,0,0]) ;

> b:=vector(4, [4, 12, 18, 0]) ;

> T:= augment(A,b) ;

first iteration: y is the entering non-basic variable and SL2 is the leaving basic variable.
Multiply row 2 by Y2 so that pivot element becomes 1. Convert all other elements in the
pivot column into 0 using linalg’s pivet command (“simplex” package has pivot also).
> temp:= mulrow(T,2,1/2);

> T1:= linalg[pivot](temp, 2 , 2) ;



second iteration: x is entering variable and SL3 is leaving variable.

> T2:= pivot(mulrow(T1,3,1/3),3,1);

Final solution from resulting table: Maximum Z = 36 occurring at (x , y) = (2, 6) .
The “simplex” package has the functions maximize and minimize for solving linear
programming problems directly.

> Z:=3*x+5%y:

> Xy:= maximize(Z , constraints) ;

> subs(xy,Z);

From project 11: Markov Chains

A square matrix can represent a transition matrix for a Markov chain (process) if its
columns each sum to 1.

> with(linalg) :

> T:= matrix(3,3, [[0.85, 0.10, 0.05], [.05, .80, .05] , [.1, .1, .9]]) ;

Verify that 1 is an eigenvalue of 7' (three ways).

> Id:= array(1..3, 1..3, identity) ;

> roots( det( matadd( scalarmul(Id , lambda) , T) ) ) ;

> solve(charpoly(T , lambda)) ;

> eigenvals(T) ;

To find the steady-state vector (x) of the Markov process, one must solve 7x = x , or
determine the eigenvector associated with the eigenvalue A = 1. To be a state vector, the
sum of its elements must equal 1.

> eigl:= nullspace(T - Id) ;

> eiglvector:= augment( op(eigl) ) :

> x:= mulcol( eiglvector , 1, 1/( sum( eiglvector|i,1] , i=1..3) ) ) ;



