
10/01/01    11:53 AM 1

USING MATLAB TO CREATE AN IMAGE FROM RADAR 
 
Douglas Hulbert 
Mathematics Department 
Norfolk State University 
700 Park Avenue Unit 2483 
Norfolk VA 23504-8060 
dhulbert@nsu.edu 
 
Introduction.  Digital imaging algorithms developed over the last thirty years have made 
remarkable progress in our ability to make accurate images of planets, ocean floors, and 
the interiors of living organisms.  Algorithms used in synthetic aperture radar (SAR) have 
many similarities with those used in x-ray computerized axial tomography (CAT), 
magnetic resonance imaging (MRI), ultrasound and acoustic imaging, and radio 
astronomy.  While these disciplines have evolved in many complex ways, several key 
aspects of digital image processing can be understood using concepts from a standard 
undergraduate mathematics curriculum. 
 
Outline. The purpose of this paper is twofold:  
• to describe the radar imaging process using concepts from undergraduate 

mathematics courses 
• to present images generated by the mathematical software in MATLAB® to give 

examples of a few of these concepts. 
 
D equals r times t. The concept of echo-ranging states that, in a medium of known 
propagation speed, the round-trip flight time of a signal, multiplied by the signal 
propagation speed, is equal to twice the range from the signal source to the signal 
reflector.  If c denotes the speed of propagation, the range to the reflector is 
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The simplest problem: estimating reflectivity of a discrete set of reflectors of known 
sizes and distinct ranges.  Because the reflectors have distinct ranges, their reflectivities 
can be estimated by measuring returned signal strength at distinct arrival times; then 
reflectivities vary directly with received amplitudes and inversely with cross-sectional 
area.  If two reflectors were to have identical ranges, their echoes would be combined in 
some unknown way, and the respective reflectivities could not be estimated. 
 
The problem of closely spaced reflectors.  Echo ranging works well when reflectors are 
isolated from one another, as when a radar is looking upward and the reflectors are 
isolated aircraft.  When an airborne radar is looking downward, echo ranging doesn't 
work very well because ground returns arrive in a continuous stream.  Furthermore, there 
is an inherent conflict (even with a discrete set of reflectors) between the radar's ability to 
resolve range and its ability to detect weak echoes.  The reason is:  shorter pulses enable 
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the discrimination of more closely spaced reflectors, while longer pulses allow the radar 
to integrate reflected energy over a longer period and thereby distinguish between 
reflected signal energy and interfering energy sources such as thermal noise.  That is, 
longer pulses tend to increase the signal-to-noise ratio, or SNR.  Figure 1 depicts the 
problem of overlapping returns when range differences between successive reflectors 
become shorter than the duration of the illuminating transmit pulse.  Notice that the 
duration of each echo is equal to the duration of the transmitted pulse. 

 
Figure 1   Range resolution vs. total illumination energy 

 
The term pulse compression denotes various methods of encoding the phase of the 
transmitted signal to effectively shorten the length of the transmit pulse.  In a chirp 
waveform, for example, the transmitted energy sweeps through a wide range of 
frequencies, allowing the radar receiver to listen while the transmitter is active 
(transmitting and receiving at the same frequency simultaneously and in the same 
proximity can destroy sensitive circuitry).  The duration of a frequency-modulated (FM) 
chirp can be on the order of 500 times the effective duration of simple pulse processing 
scheme having the same range resolution.  The chirp transmitted waveform can be 
written as 
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where a(t) represents a real-valued, positive function called the signal envelope or 
windowing function.  The echo from reflectors with reflected energies xk at ranges rk is 
represented by a sum of delayed signals 
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Processing the echo.  In engineering terms, the return signal is mixed with delayed in-
phase and quadrature versions of the transmitted FM chirp and low-pass filtered.  In 
mathematical terms, the received signal s(t) is multiplied by the complex conjugate of a 
replica of the transmitted signal p(t) to obtain 
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where tk = 2rk/c.  Next the signal (3) is passed through an analog-to-digital converter to 
collect samples for digital processing.  Using j as a sampling index for discrete t-values, 
(3) becomes 
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If there are m samples taken of the received waveform, and n unknown reflected 
energies, then (4) constitutes a set of m linear equations in n unknowns, i.e., 
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where 
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and 
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When the tj and tk are uniformly spaced and the coefficient matrix is approximated by the 
complex exponentials exp(-iαtktj), the mapping represented by A in (5a) is called the 
discrete Fourier transform (DFT).  When A represents a DFT, it is unitary so that its 
inverse is the transpose of its complex conjugate.   
 
The model embodied in (5) is only an approximation, so that the solutions {xk} have 
limitations even though (5) is numerically well-posed.  The reason is that, in the limiting 
case of a continous ground reflectivity function and an infinitesimal sampling interval, 
the finite duration of the chirp waveform (the finite support of a(*)) causes the true values 
of the reflectivity function to be distributed among the solutions {xj} by means of a 
convolution called the point spread function (psf).  For example, if the envelope a(*) is a 
simple step function with range {0,1}, then the psf is of the form sin(u)/u.  As the 
duration of the chirp waveform increases, the support of the psf narrows and the accuracy 
of the solutions {xj} increases. 
 
Cross-range resolution: the two-dimensional Fourier transform.  The next step in our 
development is to leap another dimension further into a multiplicity of data collection and 
record the returns from a number of chirped waveforms.  Our model for this larger 
interval of collection includes the following assumptions. 
 
• Each chirp collection interval is modeled as a time during which the radar platform is 

stationary (the platform moves, but displacement is negligible)  
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• Between chirp collection intervals the radar platform moves but its antenna turns with 
respect to the line of platform motion (slews) in a way that keeps its line-of-sight 
coincident with a fixed point on the ground called the scene center 

• The reference point for the range measure set {tk} or {2rk/c} of Equations (2)-(5) is 
changed from one chirp collection interval to the next so that the time delays / spatial 
offsets are always referred to the scene center.   

• The range from the radar platform to the scene center is large enough so that spheres 
of constant range are treated as straight lines where they intersect the ground. 

 
Figure 2 below depicts these assumptions.  With the notation introduced in Figure 3 we 
will rewrite (3), bringing it into the form of a double integral.  We first make the 
following substitutions in (3): 
 
• tk = 2rk/c 
• xk = f(xk,yk)∆k, where f(x,y) is unknown reflectivity and ∆k is reflector area 
• a(t – tk) = 1 inside the scene of interest 
• exp(-iβtk + iαtk

2) = 1 as it is compensated by hardware pre-processing 
• rk = xkcos θ + yk sin θ, where θ is the angle that the radar line of sight makes with the 

scene reference axis (Figure 3). 
 
 

 
 
Combining these we obtain 
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Next, we assume that the reflector surfaces form a partition of the scene of interest, so 
that (6) can be understood as a double integral.  In particular, the new form is of a Fourier 
transform in two dimensions: 

Figure 2:  Platform positions, lines of sight, and scene center 

lines of constant time delay for one chirp waveform 

trajectory of platform motion 

scene center: t=0 here for each chirp waveform data 

Lines of sight for different chirps 
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is a measure of spatial frequency with units in each dimension of cycles per unit length.  
In (7b), as the returns of one chirp waveform are processed, the variable t runs through a 
representative discrete set of values as indexed by j in (5a,b,c).  As the radar platform 
moves along its trajectory (Figure 2), the variable θ (Figure 3) runs through a discrete set 
of values called the collection aperture.  In the (X,Y) spatial frequency domain, this 
discrete set of points takes on the appearance of seats in an amphitheater (Figure 4). 
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Figure 4  Location of data collection points in spatial frequency coordinates 

Figure 3:  Positions in scene coordinates and projections onto one time-delay axis 

rk :  projection of reflector position on to the 
chirp waveform time-delay axis  

(xk,yk)  : position of reflector k 

(0,0): scene center 

θ 
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The determination of the reflectivity f(x,y) is then based its correspondence with a 
Fourier dual F(X,Y). The two functions are paired via the two-dimensional Fourier 
transform as 
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From (7) and (8) we have  
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The polar reformatting algorithm is a commonly used method of recapturing f(x,y) from 
F(X,Y), in which values of F, with collection points depicted in Figure 4, are interpolated 
to a rectangular grid in (X,Y) space, and thence to a rectangular grid in (x,y) space.  The 
rectangular grid in the spatial frequency domain is chosen as a way station for the 
information because of the existence of a very fast transform from the rectangular (X,Y) 
grid to the spatial (x,y) domain known as the Fast Fourier Transform, or FFT.   
 
MATLAB images for a single point reflector.  We conclude with a pair of MATLAB 
images which depict an idealized set of radar returns from a single reflector at scene 
center.  Figure 5 depicts data on input from the receiver, Figure 6 at output to a screen.  .  
For both figures, the matrix of amplitudes is 512-by-512. 
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Figure 5:  Amplitude of collected data pairs (I,Q) for a point reflector 
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Figure 6:  Image of the point reflector 

 
Figure 5 portrays amplitudes of collected complex-valued returns from the radar 
receiver: lighter color indicates greater amplitude.  The horizontal axis is indexed by j in 
(4), i.e., the time index within a chirp collection interval.  Within each row of pixels, this 
time is referred to the time that the midpoint of a chirp waveform returns from the scene 
center; it is called "fast time."  The vertical axis in Figure 5 counts successive chirp 
waveforms, i.e., successive values of theta in (6) and (7).  This count of look angle (or 
waveform processing interval or aperture index) is called "slow time." 
 
Figure 6 gives the final image of the point reflector, i.e., the reflectivity function f(x,y) in 
geographic coordinates, range along the horizontal axis, cross-range (distance along the 
platform trajectory) along the vertical.  The smearing along the horizontal is caused by a 
point spread function as discussed above.  The smearing along the vertical is caused by a 
similar point spread effect, influenced by the number of cross-range data collection 
points. 
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