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Abstract

A new approach for finding optimal solutions to the Traveling Salesman Problem is being reviewed and
implemented using MAPLE. The method draws from the way ant colonies manage to establish shortest route
paths from their colonies to feeding sources and back. We will compare this method to more traditional methods
such as the Lin-Kernighan approach and to other ”evolutionary” methods such as simulated annealing and
genetic algorithms.

Introduction:
The Traveling Salesman Problem (TSProblem) is a well-known problem in combinatorial
optimization. Simply stated it asks the following: given n cities, what is the shortest
complete tour possible for a person wanting to visit all cities once and return to the initial
city? There are, at least, two versions of this problem, the symmetric TSP where the
distances (which could represent geometric distances or cost or some other measure) are
the same whether one travels from city A to city B or vice-versa. The non-symmetric case
would be the one where the distances are dependent on the direction of travel along the
edges joining the different cities. [1] gives some examples of the different variations which
center around the original TSProblem. Numerous approaches for solution, interesting in
that they are truly independent approaches, abound. In fact, one can locate on the Internet,
data sets of cities (some of them containing thousands of cities) which any new algorithm
can use as comparative data. One can measure his/her algorithm’s effectiveness against a
list of top contenders. It is a rich environment where some approaches are good at solving
one specific type of TSProblem, while others, perhaps not as speedy, are more robust and
adapt to wider requirements. For instance the Ant System will work well in both the
symmetric and non-symmetric case. Keep in mind that an exhaustive search for the
minimum path would require 1

2 Ân ? 1Ã! (15 cities � 1
2 Â14Ã! = 4.35 ¼ 1010 casesÃ

computational steps. The number of steps grow faster than the number of cities raised to
any finite power and thus becomes unmanageable very quickly. All practical methods are
heuristic in nature and will usually provide an optimal path rather than a global minimum.
[2,3,4] are several good places to start investigating if you are interested in the TSProblem.

Goal:
We wanted to implement, using Maple as a platform, an ”evolutionary” algorithm that
articles [4,5] referred to as an Ant System. This is part of an effort to introduce
undergraduate students to the TSProblem and the different methods of solution available.
This is in the context of the development of a special course, opened to motivated students
in search of research experiences that help them prepare oral presentations at conferences
(such as an undergraduate research symposium) and write undergraduate research
papers. We felt that the students would be more likely to become ”engaged” if a connection
with the real world was forthcoming. Several such approaches, for instance use of
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simulated annealing, neural networks, genetic algorithms, are appealing because they
attempt to solve complex problems by incorporating in their mode of solutions processes
which are observed at work in the world around us. They offer excellent entry points for
curious students who are, then, more likely to investigate well-known algorithms such as the
Lin-Kernighan approach [6] for solving the TSProblem. In the case of ants, although
individual interactions may be simple (one ant following the chemical scent of another),
together they can determine the shortest route to a food source.

Definitions:
n represents the number of cities.
m represents the number of ants. Contrary to our initial reaction we will in fact use only
m = n ants, starting the process with one ant per city.
dij = ÄÂxi ? xjÃ

2
+ Âyi ? yjÃ

2Å
1
2 represents the Euclidian distance between cities i and j, i.e.

edge Âi, jÃ. The information is kept in the form of a distance matrix W.
R ij =

1
dij

represents the visibility on edge Âi, jÃ. This quantity will be raised to power K which

we will use to control the degree of visibility. This means that we are letting a given
(artificial) ant make some local decisions and possibly opt for the nearest city at a given
step in the process.
b ij represents the intensity of the trail on edge Âi, jÃ. This is a measure of the amount of
pheromone, the chemical marker deposited on the trail by each ant. The higher the level of
pheromone on a given edge, the more likely a given ant will follow that edge. This quantity
will be raised to power J which we will use to control the reliance on scent. The way in which
this quantity will be handled in our process is not fully intuitive. In fact, let us explain how
time will be handled in our simulation. At each time step, the m ants, in unison, will travel to
the next allowable city (the choice is based on a stochastic decision). That part of the
simulation takes place over a period of n steps, at the end of which each ant will have
completed a tour. At that moment (at moments n, 2n, 3n, ... when cycles will have been
completed) the trails’ scent level will be updated. The update rule for the pheromone levels
is b ijÂt + nÃ = _b ijÂtÃ + Ab ij where _ < 1 is such that Â1 ? _Ã represents the evaporation of
scent between time t and t + n and where Ab ij = >k=1

m
Ab ij

k measures the additional trail
traffic with

Ab ij
k
=

Q
Lk

if k-th ant uses edge Âi, jÃ

0 otherwise

Q is a constant and Lk is the tour length of the k-th ant so that, the shorter the tour, the
more the chemical reinforcement.

pij
k ÂtÃ =

Äb ijÂtÃÅJÄR ijÂtÃÅK

>
k5allowed

ÄbikÂtÃÅJÄR ikÂtÃÅK
if edge Âi, jÃ was not previously visited by ant k

0 otherwise

represents the transition probability. This means that, at each time step t, ant k will
determine, in a probabilistic fashion, which city it will visit next. This probability is based
somewhat on the distances to the nearest cities that it has not visited yet as well as on the
amount of pheromone present at that moment on the different allowed edges. Therefore
the transition probability is a trade-off between visibility (which says that close towns should
be chosen with high probability, thus implementing a greedy constructive heuristic) and trail

2



intensity at time t (that says that edge Âi, jÃ is highly desirable if it has seen a lot of traffic),
thus implementing the autocatalytic process. An autocatalytic, i.e. positive feedback,
process is a process that reinforces itself, in a way that causes very rapid convergence and,
if no limitation mechanism exists, leads to explosion!
The central data structure, in this algorithm, is an array referred to as tabuk. It contains, for
ant k, a growing list of all the cities it has already visited.
Algorithm:
A detailed description of the algorithm can be found in [6] and a MAPLE program
attempting to implement the algorithm is available by sending an e-mail to
bruno.guerrieri@famu.edu. In a nutshell, think of n ants (one per city) taking a day
(figuratively speaking) to go to the next city in their own tour. That initial group of ants will
find all scent levels to be the same on all trails, set at some initial minimal non-zero value.
Let us also assume, for sake of argument, that there are 30 cities. Each morning, the ants
roll a weighted die (taking into account proximity and scent level) to determine the next
(new) city they will visit. Records of ant choices, city visited, trail scent levels are rigorously
kept. At the end of the first month the first cycle is completed and all visited trails are
”chemically” updated. At the beginning of the new month, a new set of n ants starts a new
cycle, the difference being that trail levels are not uniform (meaning the same on all trails)
anymore. The above process is repeated month after month for a given number of cycles.

Conclusion:
We are now trying to adjust the different parameters (in particular J,K,_,Q mentioned
above) to speed up the convergence process to its optimal answer. A thorough
investigation of the parameter space would call attention to bad solutions and stagnation
situations where all ants take the same tour. There is, in fact, a multitude of quantities and
situations to be investigated that could sustain efforts carried out by different students. We
mentioned the study of the parameter space. One can also investigate and see if ”daily”
update of scent is superior to ”monthly” update, not to mention the fact that the TSPproblem
has so many variations itself, for instance the unsymmetric case or the constrained one [7].
Concerning the speed of convergence, we are still in the analysis phase of this algorithm
not having been able to investigate the parameter space as thoroughly as we would have
liked to (we hope to entice more students!). So, our rendition of the algorithm is not
competitive yet with approaches using the Lin-Kernighan or simulated annealing methods.
We should state that comparisons based solely on speed of execution are not always fair
because the ”robustness” of a method is also an important factor. By robustness, we mean
minor changes in the algorithm allow it to ”solve” variations of the TSPproblem and perhaps
even address other combinatorial optimization problems altogether. More importantly,
moving away from the traditional TSPproblem where all the initial information is static, we
are now in search of algorithms that will face the same complexity and, in addition, will need
to adapt to varying situations as time elapses. For instance, the constant updating of a
pheromone trail enables real ants to adapt to changes in the environment. It would be
interesting to compare how gracefully the Lin-Kernighan algorithm and the Ant System
would recover when, deep into the solution process, a ”deus ex machina” traffic overloading
were to develop on some of the edges.
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