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ABSTRACT:  Interactive linear algebra laboratories at UM-D have the innovative feature that the 

presentation of each laboratory’s focus topic spirals through three levels of  increasingly sophistication:  

(1) basic, (2) realistic, (3) advanced.  This increasing-levels-of-maturity approach provides students with 

the bridge to real-world application. It also allows the instructors to choose the level to which to expose 

their class. 

INTRODUCTION 

A linear algebra project at the University of Michigan – Dearborn has developed and is developing 

pedagogical materials for sophomore level linear algebra.  Our University is a mid-sized (6,600 

undergraduates) state-supported, commuter university located in metropolitan Detroit.  A materials 

development project funded by a grant from the National Science Foundation is currently underway, and 

has as one of its primary components, the development of computer laboratories.   

Most applications in linear algebra fall into one of eleven categories.  For each category we have developed 

a laboratory which focuses on the features common to that category.  All laboratories are heavily 

dependent on computer use. 

 
1) Using Matrices as Data Storage Devices (A) 
2) Flow-Type Problems (Ax=b) 
3) Stochastic Matrices (Markov Processes)  (Axn-1 = xn)  
4) Steady State / Equilibrium Problems (Ax = x) 
5) Network Problems:  Adjacency Matrices (An) 
6) Potentials:  Incidence Matrices (A x = b – R y) 
7) Measuring Proximity (ATA and AAT) 
8) Curve Fitting:  Overdetermined systems (ATAx = ATb) 
9) Computer Graphics (Axn-1 = xn) 
10) Decoupling Problems:  Eigenvalue and Eigenvector (B-1AB = D) 
11) Uses of the Singular Value Spectral Theorem 

Each laboratory begins with a few straightforward examples illustrating the concept. Then a second level 

of maturity is introduced by revisiting the topic, this time addressing real-world complications, and making 

adjustments to the solution found at the first level.  This maturing procedure continues until several real-

world levels of practicality have been incorporated.  Finally, the topic is revisited a third time, introducing 

yet more realism and presenting relevant special techniques.  This level-of-maturity process allows students 

to learn how to refine a simple model so it will reflect a closer approach to reality.  It also allows the 

instructor the freedom to choose the level to which he or she wishes to expose the class.  And it provides 

advanced students with avenues for learning advanced material. 



Each module concludes with a summary section advising the user how to decide whether a given problem 

will fit into the general format described in that module.  The development of this skill, ignored in most 

texts and labs,  may well be the one of greatest use to students after they leave the classroom.  The goal of 

these summary sections is to help the student develop into an intelligent user of linear algebra, and to 

incorporate linear algebra techniques into his or her arsenal of problem solving tools. 

The mode of the presentation is interactive:  some parts of the module are presented in finished form, and 

for other parts students are instructed to work out well-defined parts of the development.  At the end of 

each level are several relevant exercises. 

In this paper we present an overview of two of the laboratories in our series.  

Example 1:  Laboratory on Flow-Type Problems. 

The flow of quantities from one place to another can be recorded as a system of equations; such systems 

can then be expressed in matrix form as Ax=b.  Flow can involve any kind of object, such as 1) the flow of 

passengers in an airport between terminals, or 2) the flow of water in a watershed area.  Two more 

sophisticated types of flow are 3) a water flow system through pipes with cross-branchings, where the rate 

of flow can be regulated by valves, and 4) the flow of traffic along a grid of streets.  Other flow problems 

can involve money, molecules or even such abstract concepts as length or time.  

Level 1: (Unbranched Tree Diagrams: unique solution)   

The simplest flows are those modeled by an unbranched tree diagram.  The flow of water through a 

regional watershed corresponds to a tree the nodes of which are the points where two or more streams 

merge. In a second example, the newspaper distribution system, the flow is of published papers which all 

start at a single printing plant, and are distributed to regional substations, and then divided again and 

bundled to the delivery people, and then finally delivered to the customers.   The nodes are the places 

subdivision occurs. 

In both examples, there is a balancing at each node in the sense that the “total amount in” must equal the 

“total amount out”.  This balancing is the key to flow-type problems, since at each node, this balance gives 

an equation, and the resulting system of equations can be expressed as a matrix equation Ax = b, and 

solved.   

Another mentioned is the distribution of supplies in a fast food chain, where the supplies flow out from 

national headquarters to regional headquarters, to the individual stores, to the customers.  Interestingly, the 

payments for these supplies flow through the same tree diagram, but in the opposite direction.   

Level 2:  (Extension to Systems with Cross-Branching: many solutions)   



A large water purification plant supplies the needs of the ten clients at the top of the diagram shown below.  

Initially the dotted x9 pipeline is absent.  The needs of all clients can be supplied so long as long as there is 

no blockage in any pipeline.  But if a pipeline, say x6, becomes clogged or contaminated, then up to half 

the clients would lose their water supply (assuming x9 is not present.)  The way to improve this situation is 

to install more pipes to allow multiple ways to move water from one node to another.  For example, new 

pipe could be installed at x9.  After it is installed, if any pipe breaks, then at most two of the ten clients will 

be without water service, rather than five. 
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With the dotted pipeline installed, water can go from H to E in two different ways; we no longer have a 

simple tree, we have cross-branching. 

The system of equations resulting from the balancing of “in” versus “out” at the nodes will be 8 equations 

in 9 unknowns.  Since the number of variables exceeds the number of constraints (equations), we expect a 

parameter in our solution, and therefore expect infinitely many solutions.  That turns out to be the case for 

this example, and students are instructed to carry out the details in this example.  

Level 3.  Simultaneous Flow of several Species:  X-Gates.   



At the third level, a new type of node is introduced which has restricted entry.  A type of modeling, more 

sophisticated than at the previous levels, can be achieved by the gluing together of several of these so-called 

X-gates into a complex, capable of handling real world problems involving sorting.  Examples of quantities 

sorted are eggs according to size, airline passengers according to needs, and chemical compounds according 

to elements.   

An example of an abstract application of X-gates involves determining a relationship between t, s, and g 

where t is the time it takes a body to fall, s is the distance it falls, and g is the acceleration due to gravity.  

The categories into which we sort are M (mass), L (length) and T (time). To begin we write 

 t =  k sa gb    (where k is a dimensionless constant.) 

where what we want to know are the values for a and b.  The dimension of the left side is time alone, that 

is,  M0L0T1 .  On the right side, s is a length so it has dimension L, and g is acceleration so it has 

dimensions  L T-2.  The dimensional counterpart to the equation above is therefore: T  = (L)a (LT-2)b = M0 

La+b T-2b . We have a three interconnected X-graphs, with three restricted-entry nodes: Mass (M), 

Length(L), and Time(T).  Matching exponents of the left side of the equation (top of diagram) with the 

right side (bottom), we have  

length (L)

 a units of s (=L)

1 units of t (=T)

b units of g (=LT   )-2

 mass (M) time (T)

-2b0

0 0
1

a b

0 = 0  (balance at the M-node) 

  0 = a + b (balance at the L-node) 

  1 = -2b  (balance at the T-node) 



which (if the 0=0 identity is ignored) is a system of two equations in two unknowns, expressible in 

augmented matrix form as 
1 1 0
0 −2 1    .  Back substitution yields b = -1/2 and a = 1/2, so the equation is 

t = k s(1/2) g(-1/2), or in more familiar form, t = k
s
g

.  

  

We have found this formula without observing a single experiment, an impressive outcome achieved with 

unbelievable ease.  Several more complicated dimensional analysis problems are presented for the student 

to solve. 

Example 2:  Stochastic Processes Laboratory    

Level 1.  At this basic level, several of the usual examples involving stochastic processes are presented: 

population movement, shifts in brand loyalty among consumers, rats in a maze.  These are well enough 

known to need no further explanation in this paper. 

Level 2. At this Level, students learn how to redefine the categorizing process to acquire more information 

from the analysis.  Even more important is the study of the many situations in the real world which have a 

stochastic feel to them, but fail to be stochastic in some way.  Level 2 presents ways to convert these 

nearly-stochastic problems into stochastic ones, by introducing new categories into which the misfits might 

fall.  This can be trickier that it first appears. The ability to convert near-stochastic problems into stochastic 

ones is very practical skill for students to have.  

Level 3:  Examples of special states are introduced, including absorbing states and reflecting states.  Long-

term behavior is also analyzed.  Non-stochastic effects such as situations in which there is an overall 

growth in the population, or growth in certain subcategories, are studied and brought within the envelop of 

understanding. 

SUMMARY 

To date, seven of the eleven projected labs have been completed, of which five have been classroom tested 

and revised based on student reaction.  Student reaction has been positive and evaluations have been high, 

with many students saying the modules were the best part of the class. 

There is one additional maturing component connected with the labs, a collection of perspective 

summaries.  These summaries are relevant only after a certain subset of the labs have been completed.  For 

example, the flow approach, the network approach, and the stochastic approach, all apply to the area of the 

movement of goods and services from one place to another.  After completing all three labs, students are 

presented with a handout summarizing the three approaches, and a side-by-side comparison and contrasting 

of the methods.  This develops the students’ skill of being able to select the right approach to fit the 



specific problem or situation.  Other such summaries relate to other subgroups of lab topics. The 

development of user maturity is the central goal of our laboratories. 
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