Graphics Calculator Applicationson 4-D Constructs

The measure of an n- D geometrical object, m(g, ), isthereal number, r, of n-D

unit cubes, u", that tessellate (tiles with no laps or gaps) the geometric object.
m(g,)=r u". Some n-D geometric figures, p,, can be countably tessellated by

k
n-D constructs, c,, using the vertices. p, =Um(c, ). The measure of such objects,
i=1

m(p, ), is the sum of the measures of the tessellating constructs. m(p, )= i m(c, )-

The measure of any n-D construct, c,, interms of the distances between the vertices of

the construct is expressed as: m(c, ) = lﬂ / % D,, u". D, isadeterminate such that
nl

each numerica entry inthe i th row and j th column, a;, is determined as:

a; = (num(d WV, ) + (num(d WV, )))2 - (num(d MV; )))2 : num(d@/i'vj )) is the numerical
part of the measure of the distance between vertex i and vertex j . V, ismerely a

reference vertex of the construct to all other vertices of the construct. Diagram 1 depicts a
typical trigonal paradigm for determining &, .

Vo

A

vy, ¥;) d(7;,

v
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Diagram 1. Thetrigonal paradigm for determining a; .

The expression m(c,)= %,/2—%] D,, U" wasproven to represent the measure of any n -
n

D construct in terms of the measures of the distances between the vertices by the author

and Eugene Curtin and presented to the Mathematics Department Colloquium, Southwest
Texas State University on May 24, 1995. The author had proven the formulafor 0- D,
1-D, 2-D, and 3-D inearly Spring 1991 in preparation for a statewide convention

for faculty of gifted/talented students and presented later that same year. These “real”
space proofs will follow as a matter of demonstration.

The authors of the paper have examined the measurable attributes of tetrahedrons and
have presented calculator applications on such at previous meetings of this society. A
unique tetrahedron, the smallest tetrahedron having integral sides and integral volume,
has been the basis of these presentations. This same tetrahedron will serve as a pedestal



for generating a 4 - D construct with consecutive integers. That is, we will pick a point
in

4-D space, notinthe 3- D space of the pedestal tetrahedron to serve as an initial
reference vertex, V, . Wewill smply select the next four integral lengths to locate V,
from the vertices of the pedestal tetrahedron. Since there are several such choicesfor a
4-D construct, C, , wewill select as an example for this paper the sequence that we

happened to try first, experimentally. This choice is depicted below in Diagram 2. Keep
in mind that the diagramisanimageof a 4- D constructona 2- D space, SO
appearances may be somewhat obscure and no attempt was made to draw the diagram to
scale.

Diagram 2. A 2-D imageof a 4- D construct based upon a
unigue tetrahedron and having consecutive integral edges.

The 4-D construct, called a pentatope and symbolized as c,, or specifically,
c,(12,14,13, 15,6, 8, 7, 10, 11, 9), has edges as follows:

d(,,V,)=au= 12u

d(v,,Vv,)=b u = 14u
d(v,,Vv,)=cu = 13u
d(v,,v,)=d u = 15u
d(V,V,)=eu= 6u
d(v,Vv,)=f u = 8u
d(V11V4):g u = Tu
d(v,,v,)=hu = 10u
d(,,v,)=iu= 11u
d(V31V4): ju = 9u

The measure (sometimes generically referred to as volume) of any 4 - D construct is



1 /1
m(C4):E ¥D4x4 u4-

The formulasimply countsthe 4 - D unit cubes, called unit tesseracts, which tessellate
theregion of 4- D spacethat isbounded by thefive 3- D constructs, facets:

C31(VO’V1’V2’V3)’ C32(VO’V1’V2’V4)’ C33(\/0’V1’V3’V4)’ C34(V0’V2’V3’V4)’ C35(V1’V2’V3’V4)’
whichiswhy a c, isreferred to asa pentatope.

= a 2 - 0

oo = bl ) + (uo2) — umle. )y
= a’® + b* - ¢

oo = (o) o) - ()
= a® + ¢® - f?

o = (ua v ) + o, F - o)y
= a + d* - ¢°

o = v, ) + G, ) - G,
= b* + b2 - 0

oo = . + () - bl )
= b2 + ¢ - h?



a0 = (um{a v, ))f + (rumlafv, v, ))f - (umlafv, v, )

= b* + d* - i?

a = (nzm(;l (. + umla v, ) - o)
= ¢ +c -0

o = om0, + ol - o)
¢+ d> - j?

VIV SO SN
= d2 + d? - 02
= 2d?

m(c,)=m(ab,c,d,e f,g,hi,j)
11 4

:Z 2_4 4x4 u
2a2 a2+b2_eZ a2_'_(:2_.':2 a2_'_(.12_92
_ 1 |1|a®+b*-¢€ 2b? b?+c?-h?> b?+d®-i?
241/16|a®* +c* - > b*+c*-h? 2c? c’+d*-j?
a2+d2_92 b2+d2_i2 C2+d2_j2 2d2

which is programmable.
m(12,14,13,15,6,8,7,10,11,9) = 130.9556223 u* tothenearest 107".

The pentatope has five facets and each facetisa 3- D construct, c,. The measure of
any c, intermsof the distances between the vertices or edgesis

11
m(c3):§ -7 Daxs u’.

23
; ap a4
D3 x3 a'21 a22 a23 '

a31 a32 a33



Diagram 3. A 2-D imageofa 3-D construct.

Diagram 3 may help in representing the numerical entriesfor D, , .

a,, = (um(d oV ))f + (um{a v\, ))f - (umiabv,v, Y

= a + a - 0°

a, = (n:m(j () + o, - G, )
= & + b - d

a, = (n;m(:z () + umlo s, ) - s, )

20 = ) + (e, ) - o, )

= b2 + b2 _ 02

oo = (e, + (o) - (o,
= b2 + ¢ - f2

o = (V. ) + oo ) - e
= 2 + ¢ - 02
= 2¢?

m(c,)=m(ab,c,d,e, f)

10/1
= % >3 Dys U



2a’ a?+b?’-d?* a’+c?-¢°
_Blﬁ S A ety

a+c e2 b?+c*-f2 2c?

which is programmable.

Dissecting ¢, we have the following five tessellating tetrahedrons, which are facets of
C,: C;; (12, 14, 13, 6, 8, 10) is depicted in Diagram 4.

Diagram 4. C;; (12, 14, 13, 6, 8, 10). One of the tetrahedrons which tessellate the chosen C, .
m(c,, )= m(12, 14, 13, 6, 8, 10) = 93.3914997 u® to the nearest 107" .

C;, (12, 14, 15, 6, 7, 11) isdepicted in Diagram 5.

Diagram 5. C, (12, 14, 15, 6, 7, 11), one of the tetrahedrons which tessellate the chosen C, .

m(c,)=m (12, 14, 15, 6, 7, 11) = 72.7247474 u® tothe nearest 107 .

Cy; (12,13, 15, 8, 7,9) isdepicted in Diagram 6.



Diagram 6. Cg; (12, 13, 15, 8, 7, 9), one of the tetrahedrons which tessellate the chosen C, .
m(c,,)=m(12, 13, 15, 8,7,9) = 101.3409742 u® tothe nearest 107 .

C, (14, 13, 15, 10, 11, 9) is depicted in Diagram 7.

15u

Diagram 7. C,, (14, 13, 15, 10, 11, 9), one of the tetrahedrons which tessellate the chosen C, .
m(c,,)=m(14, 13, 15, 10, 11, 9) = 176.4336317 u° to the nearest 107" .

Cs (6, 8,7, 10, 11, 9) isdepicted in Diagram 8.



Diagram 8. C4 (6, 8, 7, 10, 11, 9), one of the tetrahedrons which tessellate the chosen C, .

m(c,;)=m(6,8,7,10,11,9) = 48 u°.

im(%i): 491.896853 u® tothenearest 10°° .

A c, istessellated withten 2- D constructs, trigons, ¢, . Themeasureof any c, in
terms of the distances between the vertices or edgesis:

1 /1
m(Cz):E ?szz u2

D a; ap
2x2 '
A Ay
VIJ
a u hou
¥, L
cou

Diagram 9. A 2-D construct, trigon, C, .

a,, = (um(d oV ))f + (um{a v\, ))f - (umiabv,v, Y

= a® + a® - 0

oo = (o)) o) et
= a2 + b2 - 2
= Ay

a, = (um(d( v, ) + (umld (v, ) - (umlale, v, ))f



m(c,)=m(a b, ¢)

_ 1 /1 2

T 21z et

_ 1 2a’ a> + b®> - ¢ o
2 \4 2> + b* - ¢ 2b?

which is programmable.

Each c, facet of p, hasfour facets which are subfacetsof c, . Thesubfacetsof c, are
the tessellating c,, facets of each c; .

Thefacetsof c,, are determined by the following four triplets of vertices and each triplet
of verticesis paired with the corresponding triplets of edges from the specific c, :
(Vo’V1’V2) - (121 14, 6) (Vo’V1’V3) - (121 13, 8)
V,.v,.V,) - (14, 13, 10) v, v,,\,) - (6,8,10) .

Thefacetsof c,, are determined by the following four triplets of vertices and each triplet
of verticesis paired with the corresponding triplets of edges from the specific c, :
(Vo’V1’V2) - (121 14, 6) (Vo’V1’V4) - (121 15, 7)
V,.\v,.Vv,) - (14, 15, 12) v, v,.v,) - 6,7,11) .
Notice that (\/O,Vl,Vz) iscommon to facetsof c,, and c,, and should not be used twice
since any such usage would violate the essence of tessellation.

The facets of c,, are determined by the following triplets of vertices and each triplet of
verticesis paired with the corresponding triplets of edges from the specific c, :
(Vo’V1’V3) - (121 13, 8) (Vo’V1’V4) - (121 15, 7)
(VO’V3’V4) - (131 15, 9) (\/11V3’V4) - (81 7, 9) .
Noticethat (,,V,,V;) iscommonto facetsof ¢, and c,, and (V,,V,,V,) iscommon to
facetsof c,, and c,; and neither should be used twice in determining the tessellating
C,, Subfacetsof c, .
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The facets of c,, are determined by the following triplets of vertices and each triplet of
verticesis paired with the corresponding triplets of edges from the specific c, :
V,.v,.V,) - (14, 13, 10) V,.v,.v,) - (14, 15, 12)
V,.v,.V,) - (13,15,9) V,.v,.v,) - (10,11,9) .
Noticethat (/,,V,,V,) is common to facetsof c,, and c,, and (V,,V,,V,) iscommon to
facetsof c,, and c,, and (\/0,V3,V4) is common to facets of c,, and c,, and none of
these facets should be used twice in determining the tessellating c,, subfacetsof c, .

The facets of c,, are determined by the following triplets of vertices and each triplet of
verticesis paired with the corresponding triplets of edges from the specific c, :
(\/11\/21\/3) - (61 8’ 10) (\/11V21V4) - (61 7, 11)
(\/11V3’V4) - (81 7, 9) (\/21V3!V4) - (101 11, 9) .
Notice that (,,V,,V;) is commonto facetsof c,, and c,, ,
(v,,V,,V,) iscommonto c,, and c,
(V,,V,,V,) iscommonto c,, and c,
and (V,,V,,V,) iscommonto c,, and c, .
So, none of these facets of c,, contributes to any new subfacetsof c, .

The measures of the subfacetstessellating c,, of c, aretothenearest 107":

m(c, (1214,6))=  35.7770876 u?
m(c,,(12138))=  46.9993351 U’
m(c,,(141310))=  62.3853949 U’
m(c,, (6,810))= 24 u?

m(c,s(12157))=  41.2310563 u?
m(c,, (141511))=  73.4846923 u?
m(c,,(6,7,11))= 18.9736660 u?
m(c,(13159))=  58.1651743 u?
m(c,(8,7.9))= 26.8328157 U’
m(c,,,(10119))=  42.4264069 u?

10

Zm(c%): 430.2756291 u? , to the nearest 1077

A c, hasten edges and each edgeisalinesegmentora 1- D construct, c,. The
measure of any ¢, in terms of the distances between the vertices or the length of an edge
is:



1 /1
m(cl):i ?Dlxl ul-

D = |au|-

Diagram 10 depictsa 1 - D construct, c, .

/
¥

o

Diagram 10. A 1-D construct, line segment, edge, C, .

a,, = (um(d o \4))f + (umld o\, ))f - (umla (v, )Y

= a2 + a2 - 02
= 2a’
m(c,)=m(a)
1 1
= _| ? D1 u*

Each of the ten edges might be referred to as a sub-subfacet of ¢, or sub® -facet of c, .

m(c, )= 12 ut
m(c,)= 14 u*
mc,)= 13 W
mc,)= 15 u*
mcs)= 6 u
mce)= 8 u
m,)= 7 u
mlc,)= 10 U
mlce,)= 11 W
mcy)= 9 u

im(clj ): 105 u'
=
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A c, hasfivevertices and each vertex isapoint ora 0- D construct, ¢, . The measure
of any ¢, is:
1]/1
m(Co):a ?Dow u’
= 1 u®.

Each of the five vertices might be referred to as a sub-sub-subfacet of ¢, ,
or sub®-facet of c, .

uO
uO
uO
uO
uO

The following constitute “real” space proofsfor counting the number of cubes that
tessellate “real” constructs:

Thesizeof apoint,a 0-D construct, .

m(co):l u® (a point tessellates a point and
apointisalsoa 0-D cuba?’)
_ 1 1 0
= o1\ Doxo U

Thesizeof alinesegment, a 1 - D construct, .
Suppose the measure of a line segment determined by vexticasd V, is a u* .

Yy
o ou
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where D, = |a,| and
a, = (um{d o\, ) + (umla v, \a))F - (rum(af, v )Y
= 2a’

Theareaof atrigon,a 2- D construct, C, :

m(cz):b—zh:w where sin(e):g or h=a(sin()),
_ (ba)sin(€))
2

The cross product of vectors, X, Y, i

s
angle to the plane determined by X and
but in the opposite direction.

Y,where X x Y isavector at aright
X

X x
Y. Y X isavector of the same magnitude
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Themagnitudeof X x Y is H)Z XVH:H)ZHH\?H(sin(B))

A \‘\\c
g B
A = alg = olp x4 =][axH
= B|AGnE)
=la(sin(6)) .
From above,
m(c )=HAX BH u? and clearly HA x BH > 0
2 2 = )

= 2 A x g
2

1Al B A 18] En*60)

<Al - cose)
1] - 1A 18] eos'€)
181" - (AlBj(cos)]

F
g 7

The Dot Product of vectors, X and Y,is X « Y :H)ZHH\?H(COS(B))
From above,

pd

|
Y

I
>

@Ax EHZ ﬁ: M‘ZHEHZ - (A- B)2 , LaGrange Identity.
Also from above,



Law of Cosines, cos(f)=

and

wie)= 5|4 lef - v

a2 +b? -2
2ab
2ab(cos(p)) = a* +b? - c?

a’+b*-c?
ab(cos(6)) = 5 :

[Afeose)= 25 =5

2 2 _ A2
A-B:a+b C
2

A = a. [g -

And, from before,

where a;,

1] 502 ?+b? - 2
mic, )=—=_/a’h” — u
) 2\/ %
\/4a2b2 a’+b? - u2

NI, N~

1
4

2a 2b* - a ?+b* - )2) u?

1 2a’
2 2 + b2 _ CZ

2 |a
/ 1
? D2x2 u2
2a’

a2 + a2 - 02

L
21
1
21

15



(rum(d e\ ))f + (rumlafv v ))F - (rumlafy, v, ))F

a, Ay

a? + b* - ¢

(rum(a (v, )F + (umlaf, v, )F - (rumlafy, v, ))f
a,, 2b?

b> + b* - 07

(rum(d Qe ) + (umla (V2 )Y - (um{afv, v, )Y

Mo

(V. V) i *: (%, 7;)
& 4

(V. V)

a, = (um(af, v )JF + (wm(afv, v, ) - (umlafyv, )F

Volume of a parallelepiped and of a 3- D construct, ¢, .

Area of aparallelogram:

¥

171 :: 171 (ss8)
g

I &

Areaof apardlelogram = base times height

=a|(vlin@)) v
=[lvi(sn(e) v

= |o x v| u® , from previouswork.

16
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Parallel epiped

h isthe height of the parallelepiped, which is the orthogonal projection of G on the cross
product of Vv and w .

T

otthogonal projection of
4 on 4 a I

orthogonal projection of U on a

o

cos(6) =

The dot product of G and & ,

0+ 8= |aja(cos(6) .

_Gea
) o

Jd(cose)) = 22

e
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From before, orthogonal projection of U on a

(cos(6))

Uea

=

e
where the absolute of the dot product between U and a locates the orthogonal projection

of U on a intermsof theangle 6 (justincaseg < 6 < m).

h of the parallelepiped:
W perpendicular to

h = | orthogonal projectionof G on Vv x W| , V x
vand w.

the plane of
Ge (V%)

U

the dot product of G and (\7><\7v) divided by the magnitudeof v x w .

u* , the absolute value of

The volume of the parallelepiped is the area of the base times the height:

2|G' (VXW] 1

V of parallelepiped =|Vx Wu Wu
=|ds (Uxw) u®
ik
V X W = |v, V, V,
Wl W2 W3
u1 u2 u3
e (UxW)=|v, v, v,
Vvl W2 W3
ul u2 u3 Ij'Il u2 u3
V of parallelepiped = |v, v, v,| U 5/1 v, Vi U
Wl W2 W3 @Vl W2 W3
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[
:% u3
v
i
— ap 3
‘575“
HvH
i
_ [ 3
= 0 S? u’, T, transpose.
ENEEY
Igni
- U= o & 3
= [[uvw]u
HVH
e U U-°V U w
= Ved VevVv Vvew u
W e U W-e V W e W
e U U-°V U w
= G oV VeV Ve w u
U e W Ve W W e W

The base of atetrahedronisatrigon. So,the area of the base of atetrahedronis % the

area of the parallelogram base and the volume of atetrahedronis % the product of the

area of the base of the tetrahedron times the height of the parallelepiped. That is, it takes
6 tetrahedrons of the same volume to tessellate a parallelepiped, or the volume of a

tetrahedron is % the volume of a parallelepiped.



20

AA AB A-C
m(cs):% AB B+B B-C &

A«C B+C C-C
Ae A= MHW‘(COS(Orad )
A+ B = a’ + b22 - (law of cosines)
A+ C = a® + b22 - € (law of cosines)
BeB= HBHHEH(cos(Orad )

= b2
« C = b* + ¢ - (law of cosines)

2
«C= HCHHCH(cos(Orad )

O W



where

a,

A,

A3

A

52 a?+b?>-d? a’+c?-¢€?
2 2
_1 a’+b*-d? b b*+c® -2 ;3
3 2 2
a’+c’-e® b*+c?-f? e
2 2

ELE

ZE’B b=

2b?

TEeE
e

o

2a’

= i i a2 + b2 _ d2
3112
a? + ¢ - e b?

— 1 1 D 3
= 2a’
= a + a - 0°
= a.2 + b2 _ d2

_02

a.2 + b2 _ d2 a2 +
2b? b®> +
+ CZ _ f 2

num{d v, )Y + (um{a v, ) - (oum{a v ))f

= (um(d o\ ))f + (um{a v, )Y - (oum{a v, ))f

2 - ¢
iE

¢ - f2

2c?

21
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2 .I:2

a23:b2+c—

= (rum(d oV, ) + (oum{a v, ))f - (rumlaify, v, ))f

Ay :: 2:232
(g, + bl ) - s )

d( ¥,V

Vs 4,7

a, = (umld (o) + (umla o, f - (umlaly, v, )Y

Measures of “Parallelepipeds”, p, , and constructs, ¢, may shed someinsight into
understanding the formula for the measure of a 4 - D construct.

A 0-D paallelepiped, p, ,isapoint. The number of 0-D cubes, u®, aso apoint,
that tessellate p, isone, 1. Thatis, m(p,)=1 u° . And, one0- D construct, ¢, , alsoa
point, tessellates p, .

1 1
m(co):im(po):il u’
-t 1 Doo  U° , Where
0! 2
0! = 1,2° = 1,ad D,,, = 1.
P, U, G

Diagram 11. A diagramof a 0- D parallelepiped, cube, construct.
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The absolute value of the determinant of the matrix of vector coordinates, such that
vectors have acommon vertex, the origin, and determine the parallelepiped, is the
measure of the parallelepiped.

A p, isdetermined by avector, a , with aninitia vertex, V, ,alina 1-D space.
A 1-D pardleepipedisaline segment.

Diagram 12. Diagramof a 1- D parallelepiped, construct, one coordinate system.

w(p)=l] ¢

Sinceone c, tessellatesone p, ,

m(c, )= % %‘Zaz‘ ut
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A p, ,isdetermined by two vectors, a , b with acommon vertex, V, ,ina 2-D

space.
A 2-D paraleepiped isaparalelogram.

v, (2.2:]

N ¥
151 =k :

Diagram 12. Diagramof a 2- D parallelepiped,

aparallelogram, two coordinate system.

’\?)

! -E‘.EH;‘.—
s
G
O,

CI\J

m(p,)= ‘

Ke2

9|2

Q
[ ]
(o
]
O
[ ]
Q
]

O
°
(e
Il
O

N

, law of cosines
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2a? a’+b?-c?

u2
a’+b?-c? 2b?

m(pz)=\/ =

22

Since two mirror-image congruent c, tessellate one p, ,

m(c,)= %\/% a’ +2;22— c? * +2T)22_ g u

2, = (um(d oV, ) + (um{a (v V)Y - (rumla s v, )Y
= 2a’

2., = (um(d{vov,))f + (umlabv, Vv, ) - (rumlafs v, ))f
= a + b - c
=

a, = (um{d o, ))f + (rumlafv, v, ))f - (umlafe, v, )F

= 2b?



A p, isdetermined by threevectors, &, b , ¢ with acommon vertex, V,,in 3-D

space.

b

Diagram 14. 2-D imageof a c, suchthat six c,
with the same measure tessellate p; .

& a, a
%abba
)

a;

G

e

B | Fes

MOOoc,
w

b,
C

3

(¢}
N

26



ded aeb a-c
m(p,)= |p+d beb bec|u’
Ced Ceb GCeC
a, = a e+ a = a
L - @ + pb? - d*  lawofcosnes
a, = a <+ b = b e a = 2
= 3y
~ ~ . . a? + b* - ¢ .
a, = a e+ C = C e+ a = 5 , law of cosines
=
a, = b e b = b?
_ . . - b> + ¢ - f? .
a, = b e C = C e b = 5 , law of cosines
= 3y
8z, = C e+ C = ¢
o a’+b*-d? a?+c?-¢°
m(p)_ a®+b?-d? b22 bz'|'C22—f2 ul
,)= -
2 2
a?+c2-e> b+ci-f2 o
2 2
2a’ a> + b?> - d* a® + ¢& - €°
R 2b? b2 + ¢ - f7 U
a? + c¢2 - e b + ¢c® - f? 2c?

Since six ¢, having the same volume tessellate one p,,
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2a° a’+b’-d* a*+c*-¢€°
2 b2 d2 2b2 b2+c2_ .I:2

a’+c?-e® b*+c*-f? 2c?

u3

11
m(c;)= 6\/ >
D3x3 U3

a,, = (um(d o \4))f + (umld o\, ))f - (umla (v, )Y
+ (oum

|\>|H

8, = (mzm(czl Z/ . )));2 " d(dé/ V) - (um(afy, v, )Y
8, = (mzm(czz §/o,\f)));+ (?un;(zd VeV )Y - (um{afy, v, )Y
a, = (r;m(zIl () + (e, ) - G, )
8, = (nEm(E z/\: ))(); + (_nur:gd VoV ) - (um(afv, v, ))f
8, = (nzm(cz1 E/v F + (um(d e v )Y - (um{afv, v, )Y

A p, isdetermined by four vectors, @, b, ¢, d with acommon vertex, V, , (0,0,0,0),

ina 4-D space. Theendof & isavertex V, with coordinates of (al,az,ae,a4),
d(,,v)=a u or |[a] = a; theendof b isavertex V, with coordinates of
(b..b,.by,b,), df%V,)=buor [ = band dfv;,V,)=eu; theendof ¢ isa
vertex V; with coordinates of (c,, ¢,, ¢;, ¢,), d(,,V;)=cuor [¢] = cand
d(v,V,)=f u; theendof d isavertex V, withcoordinatesof (d,,d,,d,,d,),
df,.v,)=d uor [d| = dand df,Vv,)=gu, df,V.)=hu, df,.V,)=iu

and d(,,V,)=j u. A 2-D imageof thepreceding p, or c, ismoremarginal than
theprevious 2-D imageof p, or c;.



m(p,)=

a, =

2

a a a,
b, by b, U
c, C C,
1 d2 d3 d4
a, a,[f
0
b, b, U
C, C4B
d3 d4D
4
u4
¢ d|l u
ded Aeb &deC aded
bed beb be& bed
_ ~ u
Ged Ceb GCeC Ceod
ded deb deC ded
da e a = a°
_ — a2
é ° b = b . é =
3,
a2
A e G = C e a =

, law of cosines

, law of cosines
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a, = ae+d =d- a = , law of cosines

~ _ _ ~ b> + ¢® - h? .
ay = b e C = C e+ b = > , law of cosines
= a32
_ - _ _ b? + d? - j? .
a = b eed = d-e b = 5 , law of cosines
= a42
a, = C e+ ¢ = ¢
2 2 +2
~ = = ~ cc + d° - .
a, = Ce+ d = d=ecCc = > J , law of cosines
= a43
- A i = 2
a, = d-e+d = d
o2 a2 +b%-e® a’+c2-f2 a2+d2_gz
2 2 2
a?+b? -¢? b2 b?+c2-h? b?+d?-i? U4
- 2 2 2
m(p4) a2+c2-f2 b2+ci-h? . c2+d? - j?
1 2 2 2
a2_‘_(12_92 b2+d2_i2 C2+d2_j2 d2
2 2 2
232 a2 +b% - e a2 + ¢ - 2 @ + g% - gz
_ |1 @ + b - € 2b? b> + ¢ - h? b® + d?> - i?
2* la®> + ¢ - f2 b2 + ¢ - h? 2¢? ¢+ d* - j°
a2 + d2 _ g2 b2 + d2 _ i2 CZ + d2 _ j2 2d2

Since 24 c, with the same measure tessellate one p, ,
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R et )

o = (o) + (o) — o, )
= 2a°

o = (o) + (o) - e )
= a2 + p? - ¢

A O SRRV AT
= a®> + ¢ - f?

o = b ) + (oo, - G, )
= a2 + 2 - gz

o = Gl )F + Cunla ) - Gurotrv )
= 2b?

o = (o)) + (o)) - Cumefv )
= b* + ¢® - h?

o = (i, )F + (o) - Gurotvv )
= b2 + d2 - j2

s = e, ) + (o, ) - (s )y
= 2¢?

Ay = (num(d 6/0,\/3 )))2 + (num(d 6/0,\/4 )))2 - (num(d 6/3,\/4 )))2
= ¢ + d* - j?

o = (v, )F + (o, ) - Gurotr v )
= 2d?

1 .
m(c,)= @n—@n( n-D paralleepiped)
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The measure of any n- D construct, m(c, ), interms of the measure of a corresponding
n-D paraleepipedis @n%@'n(pn) That is, m(c,)= %@n(pn) A review of appropriate

resources reveals that this relationship is reasonably well known. Discussions about the
relationship usually stem from fundamentally related resources; geometrical, vector

analysis, combinations of geometry and vector analysis, and multiple integration. Most of

these discussions, directly or indirectly, are dependent upon a generalization of

Cavalieri’s Principle to n - D spaces. The intuitive discussion which follows is similarly
based upon Cavalieri’'s generalization.

The facets of each n - D parallelepipgx, are p,_, parallelepipeds where > 1.

The facets of g, are the two vertices, each of which arp,a The facets op, are the
four edges, each of which ap. The subfacets ofp, are parallelepipeds, also. The
subfacets of g, are the four vertices, each of which ipa The facets of g, are the

six faces, each of which is@,. The subfacets op, are the twelve edges, each of which
isap,. And, the sub(subfacets) pf are the eight vertices, each of which ipa
Similarly, eachp, has eight facetsp,, twenty-four subfacetsp, , thirty-two
sub(subfacets)p, , and sixteen sub(sub(subfacetg)), Thatis, eaclp,, n = 1 can

be described in terms of a number of facets or subfacets, such that each facet or subfacet
is a parallelepiped.

Similarly, the facets and subfacets of constructs are also constubess two facets
which are the vertices and each of thesedg.ac, has three facets which are the edges,
c,, and three subfacets which are the verticgs,c, has four facets which are trigons,
C,, Six subfacets which are the edges,and four sub(subfacets) which are the vertices,
C,. C, has five facets which are tetrahedrons, ten subfacets which are trigorts, ten
sub(subfacets) which are edges, and five sub(sub(subfacets)) which are the vertices,
C,. Constructs, similar to parallelepipeds, can be described in terms of facets and
subfacets.

Applications of Cavalieri’s Principle generalizedto n-D spacez 1, indicates that
the measure of an n - D parallelepiped can be expressed in terms of the measure of the
base and the measure of the height of the parallelepiped. That is, the megsure of

m(pn), is the product of the measure of a baseppfand the corresponding height of
p,. Keep in mind that the base of g, is a facet of p, which isa p,_,. And, the
height of p, is the perpendicular distance between the basp,adnd the opposite facet
of p,.

Consider the following:



m(p,)
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m( base p,) m( height p, ), the base of p, isafacet, p,,

m( p,) m( height p,), p, isapoint and the measure of apoint is 1u°,
1u’m( height p,), the height of p, hasthe same measure as p, .
m( base p,) m( height p, ), the base of a p, isafacet of p,,a p,,
m( p,) m( height p, ),

1u® m( height p, ), m( height p, ).

m( base p,) m( height p,), the base of a p, isafacet of p,,a p,,
m( p,) m( height p,),

1u® m( height p, ), m( height p, ), m( height p,).

m( basep,) m( height p,), the base of a p, isafacet of p,,a p;,
m( ps) m( height p, ),

1u® m( height p, ), m( height p, ), m( height p, ), m( height p,).

1’ m( height p,)... m( height p,),

1w’ |_| m( height p,).

=1

A well known result, also associated with the generalization of Cavalieri’s Principle, is
about the measure of any n - D pyramid. The measure of any n - D pyramidhihone
the product of the measure of the base of the pyramid and the measure of the height of the

pyramid.

m( n - D pyramid) :@n}%n( base pyramidn( height pyramid).

Every construct is the simplest of pyramids. Hence,

m(c,) = B;B"n( basec, ) m( heightc,).
nQd

Consider the following:

%Elm( basec,) m( heightc,), the base ot, is a facetc,,
%@nﬁco)m(heightcl),m(co): e,
%Eﬂuo m( heightc,), the height of ac, has the same measureas

%Qﬂ( basec,) m( heightc,), the base of a is a facetof, c ,



2 bn(e) mt height ),

%@%Eu(’m( height c,), m( height c,),

%@uom( height c, ), m( height c,).

%Qﬂ( base c,) m( height c,), thebase of a c, isafacet of c;,ac,,
%Qﬂ(cz) m( height c,),

%@%@uw height c, ), m( height c,), m( height c,),

%@uom( height c,), m( height c,), m( height c,).

%Qﬂ( base c,) m( height c,), the base of a c,isafacet of c,,a c,,
%E}n(cg) m( height c,),

%E%Quom( height ¢, ), m( height c, ), m( height ¢, ), m( height c,),

%@uom( height c,), m( height c,), m( height c,), m( height c,).

e e -
u m( height ¢, )... m( height c_),
Emd ( height c,)... m( height c,)

e |‘| m( height c,).
MmO

=1
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The height of any p, isaline segment, And, similarly, the height of any c, isaline
segment. If these line segments are correspondingly the same length,

then|_| m( heightp,) = |_| m( heightc,), whichisin accordance with
=1 =1

applications of Cavalieri’s Principle. Alternately, any, determines an n-D prism and
a pair of mirror image n - D prisms determine an n - D parallelepiped. Consequently,

1
m Cn = B_Hn pn '
)= h(p)
Thefollowing programs are designed for use with a TI-82 graphics calculator:

¢, TRIGON

:Disp "THIS PROGRAM™
:Disp "WILL FIND THE"
:Disp "AREA OF ANY"
:Disp "TRIGON:"

:Disp "A<B<C"

:Digp" "

:Disp"ENTER A:"
Input A

:Disp "ENTER B:"

Input B

:Disp"ENTER C:"

Input C

If A+B>C

:Then

2A% G
:A?+B%-C* S H

2B% S|

:Disp "THE AREA IS"

:Disp (1/2) \/_((1/4)det[[G,H][H,I]])
:Else



c, TETRA

:Disp "THIS PROGRAM"
:Disp "WILL FIND THE"
:Disp "VOLUME OF ANY"
:Disp "TETRAHEDRON"
:Disp "ENTER A"
Input A

:Disp "ENTER B:"

Input B

:Disp"ENTER C:"

Input C

:Disp "ENTER D:"

:Input D

:Disp"ENTER E:"

Input E

:Disp"ENTER F"

Input F

2C% - G

:C*+A%-E® - H
:C?+B%-F% - |

:2A2 - J

A%+B?-D* - K

2B oL

:Disp "THE VOLUME IS

:Disp (1/6) \/_((1/8)det[[G,H,I][H,J,K][I,K,L]])

¢, PTOPE

:Disp "THIS PROGRAM"
:Disp "WILL FIND THE"
:Disp "VOLUME OF ANY"
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:Disp "PENTATOPE"
:Disp "ENTER A"
Input A

:Disp "ENTER B:"
:Input B
:Disp"ENTER C:"
Input C

:Disp "ENTER D:"
:Input D

:Disp "ENTER E:"
Input E
:Disp"ENTER F"
Input F

:Disp "ENTER G:"
Input G

:Disp "ENTER H:"
Input H

:Disp "ENTER I:"
Input |
:Disp"ENTER J"
Input J

2A% Q
‘A?+B%-E® LR
A% +C?-F? 55
A?+D?-G* - T
2B - U
B*+C?-H? 5V
B?+D%-1% W
:2C% 5 X
:C?+D%-0% - Y
2D? - Z

:Disp "THE SPACE"
:Disp "MEASURES'
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:Disp (1/24) \/_((1/16)det [[QRSTIRUV,W]SV.X,Y][TW,Y.Z]])

Other programs and a look at the development of the ideas of “real” constructs can be
found in a 1995 paper by the authors, “Graphics Calculator Application to Max & Min
Problems on Geometric Constructs” posted on the Eighth Annual EPICTCM page of the
Math Archives site:
http://archives.math.utk.edu
or contact
mjbbrown@tenet.edu



