
1. Faa di Bruno Formulas

Around 1850 interest in new special functions was strong, and formulas for higher derivatives of [f(x)]n,
[f(x)]¡1, and log[f(x)] were produced, both for special and general choices of f(x). Faa di Bruno trumped
these formulas by publishing a general higher-order chain rule [3] for pth derivatives of G(z) = F (u(z)):
G(p)(z) =

¡
d
dz

¢p
F (u(z)), in terms of F (m)(u(z)), and, u(n)(z), where 1 · m · p and 1 · n · p. Most

applications were, and still are, for 2 · p · 4. Exceptionally, p = 5 or 6, in statistical or plasma
physics. Bruno's condensed formula for general p ¸ 1 involves a (p+1) dimensional summation over indices
m; k1; k2; : : : ; kp with 0 ·m · p and 1 · k1; k2; : : : ; kp · p, subject to two coupling conditions:

¾p(~k) = k1 + k2 + ¢ ¢ ¢+ kp = m (1)

¿p(~k) = k1 + 2k2 + ¢ ¢ ¢+ pkp = p (2)

Characteristic here are the Bruno products,

B~k;p
(u(z)) =

pY
º=1

µ
dºu(z)

dzº
1

º!

¶kº
; ~k = (k1; k2; : : : ; kp) (3)

These products appear in the Bruno formula for one intermediate variable and also in our multivariable
analogs. The formula itself is, on recalling (1¡ 3), takes the compressed form

G(p)(z) =

µ
d

dz

¶p

F (u(z))

=

pX
m=1

pX
k1=1

¢ ¢ ¢

pX
kp=1

F (m) (u(z))B~k;p
(u(z)) ; ¾p(~k) = m; ¿p(~k) = p (4)

For p = 3(4) the number of additive terms in (4) under the ¾ and ¿ conditions are 3(5), respectively, each
term with 3(4) symbolic multiplications involving the derivatives of F (u) and Bruno products, plus numerical
coe±cients. Thus for functions of one variable, printing out the full expressions of p(z) for p = 3(4) is quite
e±cient, compared to the use of (4).

In the multivariable analogs, even for p = 3(4), the number of additive terms becomes awkward and the
derivation of the terms somewhat tiresome. This is evident already in the 2£2 case ~u(~z) = u1(z1; z2); u2(z1; z2).
A \compressed" Bruno formula becomes more attractive as the multivariable dimensions m for ~u or n for ~z,
and the order p is increased. Also, it can be used for symbolic computation instead of recursive application of
the standard ¯rst-order chain rule. Certain features of the multivariable general chain rule, such as the type
of cross-coupling between di®erent intermediate variables in the ¿ conditions, are possibly more illuminating

in a Bruno-type formula than in the full expression. Obviously, \pure" derivatives, such as @4G(z1;z2)
@z41

, are

easier to deal with than mixed derivatives like @4G
@z21@z

2
2
, which cannot always be avoided, as in calculation of¡

r2
¢2

terms for elasticity and °uidics.

2. Proofs of the Single-Variable Bruno Formula

Bruno [3] has only a hazy proof of (4), neither rigorous nor algorithmically convincing. KÄonigsberger [7]
derived a more di±cult formula for the general problem of calculating higher-order di®erentials, dpf(z1; : : : ; zN),
using a symbolic calculus and induction. Since di®erentials are invariant under di®erentiable transformations,
this in principle should yield multivariable chain rules. However, higher di®erentials package together a vari-
ety of di®erent orders of derivatives, which yield a Bruno formula conveniently only in the case M = N = 1.
But for that case, KÄonigsberger's proof also is an inductive proof of (4), as Bieberbach [2] pointed out.
Somewhat later, de la Vallee Poussin [4] produced a concise proof of (4), based on a weak form of the
Taylor expansion with remainder and a weak uniqueness theorem for \almost" power series of the form
a0 + a1h+ ¢ ¢ ¢+ aq¡1h

q¡1 +Mq(h)h
q, where Mq(h)! aq as h! 0 and Mq(h) is bounded in h for small h.
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That proof is less elementary than a longer one based on the integral form of the Taylor remainder, which
latter can be made quite explicit, at the cost of assuming slightly more regularity than the minimum needed.
The integral remainder version can be generalized quite well in the multivariable context.

An American book with a good collection of higher-derivative formulas, including many in¯nite series, is
Schwatt [8]. Oddly, he does not list the Bruno formula, only various substitutes oriented to special cases of
interest, and has little on the important topic of asymptotic series for higher-order derivatives, of interest in
statistical mechanics (Fowler [6]).

Symbolic manipulation on computer via Macsyma, Maple, Mathematica, etc. can produce any required
order of Bruno or Schwatt formulas. As shown later, a multivariable symbolic program produces multivari-
able versions of such formulas. In another direction, similar formulas appear in the Whitney [9], Dieudonn¶e
[5] theories of extensions of di®erentiable functions. See Abraham and Robbin [1] for a detailed account.

3. Integral Remainder Proof of the Bruno Formula

If u(z) and F (u) are q+1 times di®erentiable in suitable domains, the qth order Taylor expansions with
integral remainder are given by

F (u+ j) =

qX
m=0

jm

m!
F (m)(u) +Rq

³
F (q+1)(u); u; j

´
(5)

u(z + h) =

qX
n=0

hn

n!
u(n)(z) +Rq

³
u(q+1)(z); z; h

´
(6)

where

Rp (Y; v; k) =
1

p!

Z v+k

v

(v + k ¡ y)pY (y)dy; p = 0; 1; 2; : : : (7)

is the integral remainder.
Based on (5¡ 7), it will be shown that G(p)(z) is given by (4) for p · q. This will follow from

G(z + h) =

qX
p=0

hp

p!
gp(z) + Sq (G; z; h) (8)

where gp(z) is given by the Bruno formula (4), and the fact that

lim
h!0

µ
d

dh

¶p
Sq (G; z; h) = 0; 0 · p · q (9)

First, (8) and (6) imply that

G(p)(z) = lim
h!0

µ
@

@h

¶p
G(z + h) = lim

h!0

µ
@

@h

¶p

F (u(z + h)) (10)

Second, setting j = j(z; h) = u(z + h)¡ u(z), formulas (5) and (6) yield

F (u(z + h)) =

qX
m=0

F (m) (u(z))

m!

"
qX

n=1

hn

n!
u(n)(z) + uRq

#m
+ FRq (11)

where the remainders, uRq, FRq are given (in the notation of (7)) more precisely by

uRq = Rq

³
u(q+1)(z); z; h

´
(12)

FRq = Rq

³
F (q+1)(u); u; j

´ ¯̄̄
u=u(z)

(13)
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Multinomial expansion of the terms inside the brackets in (11) permits rewriting (11) as

F (u(z + h)) =

qX
m=0

F (m)(u)

m!

mX
r=0

P
k1¢¢¢kq

k1+¢¢¢+kq=m¡º

m!

k1! ¢ ¢ ¢ kq !r!
² (14)

Qq

º=1

µ
hº

º!

dºu(z)

dzº

¶kº

(uRq)
r + FRq

Each Bruno product term in (14) comes with the exponential h¿q(
~k) ; ¿q(~k) = k1 + 2k2 + ¢ ¢ ¢ + qkq,

and the power (uRq)
r
as factors. Thus application of limh!0

¡
@
@h

¢p
to (14) reduces it to linear combinations

of limh!0

¡
@
@h

¢p h
h¿q(

~k) (rRq)
r
i
= p! ±(r; 0) ±(p; ¿q(~k) and limh!0

¡
@
@h

¢p
(FRq) = 0, for p · q.

The latter result follows from Leibnitz's di®erentiation rule: for q > 0

@

@h
[FRq(u; j)] =

@

@h

"
1

q!

Z u+j(z;h)

u

[u+ j(z; h)¡ y]F (q+1)(y)dy

#

=
1

q!

@j(z; h)

@h

(
[u+ j(z; h)¡ (u+ j(z; h))]q F (q+1) (u(z + h))

+q

Z u+j(z;h)

u

[u+ j(z; h)¡ y]q¡1 F (q+1)(y)dy

)

= [FRq¡1(u; j)] u0(z + h) (15)

However, @
@h

[FR0] = F (q+1) (u(z + h)). (This recursion resembles that for derivatives of Tq(h) = C
jq(z;h)

q! , a

simple special case of the Faa di Bruno formula). Since limh!0 FR0(u; j) = limh!0

R u+j(z;h)
u

F (q+1)(y)dy =

limh!0

£
F (q) (u(z + h))¡ F (q) (u(z))

¤
= 0, induction of (15) easily yields

lim
h!0

µ
@

@h

¶p

(FRq) = 0; for q > 0; p · q (16)

A special case of the above argument, with F replaced by u, u replaced by z, and j replaced by h, leads toµ
@

@h

¶
[uRq(z; h)] = uRq¡1(z; h) (17)

and

lim
h!0

µ
@

@h

¶p

(uRq) = 0; for q > 0; p · q (18)

Leibnitz's product rule then produces

L
p;¿(~k);º =

µ
@

@h

¶p h
h¿(

~k) (uRq)
r
i

=

pX
s=0

µ
p

s

¶µ
@

@h

¶p¡s

h¿(
~k)

µ
@

@h

¶s

(uRq)
r

=

pX
s=0

µ
p

s

¶ h
¿(~k)

i
!h

¿(~k)¡ p+ s
i
!
h¿(

~k)¡p+s

µ
@

@h

¶s
(uRq)

r (19)

and thus

lim
h!0

L
p;¿(~k);º =

p!h
p¡ ¿(~k)

i
!
lim
h!0

µ
@

@h

¶p¡¿(~k)
(uRq)

r (20)
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If r > 0, every term in the ¯nite Leibnitz expansion of the above derivative (if p > ¿(~k)) will contain uRq

itself (and its derivative) which tend to zero with h. If r = 0, the limit is zero unless p = ¿(~k), in which case
it is p!, as stated previously.

Insertion of these limits in (14) gives

lim
h!0

µ
@

@h

¶p
[F (u(z + h))¡ F (u(z))] =

dpG(z)

dzp
= p!

qX
m=0

dmF (u)

dum

X
k1¢¢¢kq

¾q(~k)=m ¿q(~k)=p

1

k1! ¢ ¢ ¢kq!
B~k;q

(u(z))

(21)

which is close to (4). However, if p < q, then ¿q(~k) = k1 + 2k2 + ¢ ¢ ¢ + pkp + (p + 1)kp+1 + ¢ ¢ ¢ + qkq = p

implies that in the summation, all indices kp+1; : : : ; kq must be zero. For if any of them is non-zero, ¿q(~k)
will exceed p. This adjustment in the summation limits and indices from q to p converts (21) into (4). The
proof can now be modi¯ed for the multivariable situation.

4. Multivariable Bruno Formulas - Two Variable Proof

The basic ¯rst order multivariable chain rule formula for G(~z) = F (~u(~z)), with scalar F , where ~u(~z) =
(u1(~z); : : : ; uM (~z)) and ~z = (z1; : : : ; zN), is of course

@G

@zk
=

MX
j=1

@F (~u)

@uj

@uj(~z)

@zk
= (D~u) (D~z~u)²k (22)

or just
D~zG = (D~u) (D~z~u) (23)

where (D~z~u)²k is the kth column of the (M £N) ¯rst derivative matrix, D~z~u.

If ~F is a L-component vector of functions, then D~u
~F is an L£M matrix, and in matrix form the ¯rst

order chain rule is again

D~z
~G =

³
D~u

~F
´
(D~z~u)

¯̄̄
¯̄
~u=~u(~z)

(24)

The formulas (23) and (24) can be iterated by symbolic computation to produce all partial derivatives of
the form

@i1

@zi11

@i2

@zi22
¢ ¢ ¢

@iN

@ziNN

~G(~z) =D
~i
~z
~G; where ~i = (i1; i2; : : : ; iN ) (25)

A few programming tricks can help considerably in producing convenient print-outs. This approach will
be discussed in Section 4, following a derivation of a condensed form of the result, resembling (4), from
the Taylor expansion with integral remainder method of Section 2, limited to the case M = N = 2 with a
scalar F , so that G(z1; z2) = F (u1(z1; z2); u2(z1; z2)), the basic two-dimensional scalar version of the Bruno
problem. This result, of some interest for its exact combinatorial form, is useful in checking that a symbolic
program is producing the right numerical coe±cients as well as the right algebraic expressions. The general
M;N case is similar, and the results will be merely described.

The obvious application of the 2 £ 2 case for derivative orders p = 2; 3; 4 is to physically meaningful
two-dimensional Laplacians, and to curls and repeated curls. For orthogonal coordinates, such as polar,
confocal, elliptic, the results are well-known and more easily found by variational integral methods. When
coordinates are signi¯cantly non-orthogonal or non-conformal, or only isolated partial derivatives are needed,
an approach by computer iteration or -as detailed here- by Taylor series plus coe±cient matching, appears
preferable to KÄonigsberger or Dieudonn¶e methods.

The ¯rst stage is to obtain a \double integral" remainder form for a double Taylor expansion. Let

f(z1 + h1; z2 + h2) =

q1X
m1=0

q2X
m2=0

hm1
1 hm2

2

m1!m2!
D~m
~z f(~z) +Rq1;q2 (26)
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where the form of Rq1;q2 is to be determined. If f has the product form f0(z1; z2) = f1(z1)f2(z2), then

f0(z1 + h1; z2 + h2) = f1(z1 + h1)f2(z2 + h2)

=

Ã
q1X

m1=0

hm1
1

m1!
Dm1
z1

f1(z1) +Rq1

¡
Dq1+1
z1

f1; z1; h1
¢!Ã q2X

m2=0

hm2
2

m2!
Dm2
z2

f2(z2) +Rq2

¡
Dq2+1
z2

f2; z2; h2
¢!

=

q1X
m1=0

q2X
m2=0

hm1
1 hm2

2

m1!m2!
Dm1;m2
z1;z2

f0(z1; z2) (27)

+

q1X
m1=0

hm1
1

m1!
Dm1
z1

f1(z1) ²
1

q2!

Z z2+h2

z2

(z2 + h2 ¡ y2)
q2Dq2+1

y2
f2(y2)dy2

+

q2X
m2=0

hm2
2

m2!
Dm2
z2

f2(z2) ²
1

q1!

Z z1+h1

z1

(z1 + h1 ¡ y1)
q1Dq1+1

y1
f1(y1)dy1

+
1

q1!q2!

Z z1+h1

z1

Z z2+h2

z2

(z1 + h1 ¡ y1)
q1(z2 + h2 ¡ y2)

q2Dq1+1;q2+1
y1;y2

f0(y1; y2)dy1dy2

from the integral remainder formula for functions of one variable. Since

Dm1
z1

f1(z1)D
q2+1
y2

f2(y2) = Dm1;q2+1
z1;y2

f0(z1; y2) (28)

and
Dm2
z2

f2(z2)D
q1+1
y1

f1(y1) = Dq1+1;m2
y1;z2

f0(y1; z2) (29)

the remainder can be written as

Rq1;q2 (f) =
1

q2!

q1X
m1=0

Z z2+h2

z2

hm1
1

m1!
(z2 + h2 ¡ y2)

q2 Dm1;q2+1
z1;y2

f(z1; y2)dy2 (30)

+
1

q1!

q2X
m2=0

Z z1+h1

z1

hm2
2

m2!
(z1 + h1 ¡ y1)

q1 Dq1+1;m2
y1;z2

f(y1; z2)dy1

+
1

q1!q2!

Z z1+h1

z1

Z z2+h2

z2

(z1 + h1 ¡ y1)
q1 (z2 + h2 ¡ y2)

q2 Dq1+1;q2+1
y1;y2

f(y1; y2)dy1 dy2

for f = f0. Clearly, (30) contains two simple sums of single integrals of mixed derivatives and one double

integral of mixed derivatives, which holds when f is multiplicatively separable and @q1+1+q2+1f

@z
q1+1
1 @z

q2+1
2

is continuous

jointly in z1 and z2. Note that for q1 = q2 = 0, formula (30) reduces to

R00 =

Z z1+h1

z1

@f(y1; z2)

@y1
dy1 +

Z z2+h2

z2

@f(z1; y2)

@y2
dy2 +

Z z1+h1

z1

Z z2+h2

z2

@2f(y1; y2)

@y1@y2
dy1 dy2 (31)

where hopefully
f(z1 + h1; z2 + h2) = f(z1; z2) +R00 (32)

for non-multiplicative functions f . For h1 = h2 = 0, (31) holds for all f such that @2f(y1;y2)
@y1@y2

is continuous.
Fixing h2,

@R00

@h1
=

@f

@y1
(y1; y2)

¯̄̄
¯̄
y1=z1+h1

+

Z z2+h2

z2

@2f(y1; y2)

@y1@y2
dy2

¯̄̄
¯̄
y1=z1+h1

=
@f

@y1
(y1; y2)

¯̄̄
¯̄
y1=z1+h1

+

·
@f

@y1
(y1; zz + h)¡

@f

@y1
(y1; z2)

¸ ¯̄̄¯̄
y1=z1+h1
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=
@f

@y1
(y1; zz + h)

¯̄̄
¯̄
y1=z1+h1

(33)

and similarly

@R00

@h2
=

@f

@y2
(z1 + h1; y2)

¯̄̄
¯̄
y2=z2+h2

(34)

Consequently, µ
@

@h1

¶k1 µ @

@h2

¶k2

R00 =

µ
@

@h1

¶k1 µ @

@h2

¶k2
f(z1 + h1; z2 + h2)

=

µ
@

@h1

¶k1 µ @

@h2

¶k2
f(y1; y2)

¯̄̄
¯̄
y1=z1+h1;y2=z2+h2

(35)

if k1+k2 > 0, and the requisite derivatives exist ¯nitely. It follows that f(z1+h1; z2+h2) = f(z1; z2)+R00

as hoped. Taking this as the starting point of a double induction, whose inductive hypothesis is the validity

of (30) for a general f such that @q1+1+q2+1f

@z
q1+1
1 @z

q2+1
2

is jointly continuous, application of (30) to @f
@z1

, @f
@z2

, and @2f
@z1@z2

yields (30) for f with orders (q1+1; q2), (q1; q2+1), and (q1+1; q2+1). This establishes the desired double
induction on f , and with it a Taylor series integral remainder formula for functions of two variables which

the writers have not seen elsewhere. Application of
³

@
@h1

´p1 ³
@
@h2

´p2
to LRq1;q2 for p1 · q1, p2 · q2 and

fairly general L shows as in Section 2 that

lim
h1!0;h2!0

µ
@

@h1

¶p1 µ @

@h2

¶p2
LRq1;q2 = 0 (36)

This is applicable to remainders of F (u1; u2) and of u1(z1; z2) and u2(z1; z2), provided that @q1+q2+2F (u1;u2)

@u
q1+1
1 @u

q2+1
2

and @q1+q2+2ul(z1;z2)

@z
q1+1
1 @z

q2+1
2

are jointly continuous functions of their two arguments. Having gained the desired

integral remainder theorems, the rest of the proof is straight forward.
Suppose F (u1; u2), u1(z1; z2), and u2(z1; z2) are approximated to order (q1; q2). Then if js = us(~z+~h)¡

us(~z) for s = 1; 2, and FRq1;q2 and usRq1;q2 are the \integral remainders" exhibited in (30) for f = F;u1; u2.

F (~u+~j) = F (u1(z1 + h1; z2 + h2); u2(z1 + h1; z2 + h2))

=

q1X
m1=0

q2X
m2=0

jm1
1 jm2

2

m1!m2!
D ~m
~u F + FRq1;q2

³
~u;~j

´

=

q1X
m1=0

q2X
m2=0

D~m
~u F

m1!m2!

Ã
q1X

n1=1

q2X
n2=1

hn11 hn22
n1!n2!

D~n
~z u1 + u1Rq1;q2(~z;

~h)

!m1

²

Ã
q1X

n1=1

q2X
n2=1

h
n01
1 h

n02
2

n01!n
0

2!
D~n0

~z u2 + u2Rq1;q2(~z;
~h)

!m2

+ FRq1;q2(~u;~j) (37)

Now, Ã
q1X

n1=1

q2X
n2=1

hn11 hn22
n1!n2!

D~n
~zu1 + u1Rq1;q2(~z;

~h)

!m1

=

=
m1X
t1=0

X
¹¹s

¾(¹¹s)=m1¡t1

µ
m1

¹¹s t1

¶ q1Y
n1=1

q2Y
n2=1

µ
hn11 hn22
n1!n2!

D~n
~z u1

¶s~n ³
u1Rq1;q2(~z;

~h)
´t1

(38)
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where the ¹¹s summation is over double sequences sn1;n2 = ¹¹s~n, for n1 = 1; 2; : : : ; q1, n2 = 1; 2; : : : ; q2 (since
N = 2). Thus ¹¹s maps A2 = f1; 2; : : : ; q1g £ f1; 2; : : : ; q2g onto f0; 1; : : : ;m1g, such that ¾(¹¹s) =

P
~n s~n =

m1 ¡ t1. The symbol
¡

m1
¹¹s t1

¢
= m1!

t1!
Q

~n2A2
s~n!

. A like formula holds for jm2
2 . Combining that with (37) and

(38) yields

F (~u+~j) =

q1X
m1=0

q2X
m2=0

D~m
~u F

m1!m2!

m1X
t1=0

m2X
t2=0

X
~~s

¾(~~s)=m1¡t1

X
~~s
0

¾(~~s
0
)=m2¡t2

µ
m1

~~s t1

¶µ
m2

~~s
0

t2

¶
h¿11 h

¿2
2

²
Y
~n2A2

µ
D~n
~z u1

n1!n2!

¶s~n Y
~n02A2

Ã
D~n0

~z u2

n01!n
0

2!

!s~n0

(u1Rq1;q2)
t1 (u2Rq1;q2)

t2 + FRq1;q2 (39)

where
¿j = ¿j(~~s;~~s

0

) =
X
~n2A2

njS~n +
X
~n02A2

n0jS~n0 ; j = 1; 2 (40)

and A2 = f0; 1; : : : ; q1g £ f0; 1; : : : ; q2g (or a suitable subset of it). On taking

lim
h1!0

lim
h2!0

@p1+p2F
³
~u+~j(~z;~h)

´
@h

p1
1 @h

p2
2

(41)

all terms in (39) with t1 > 0 or t2 > 0 tend to zero, as does FRq1;q2 , by iteration of the calculations (11¡20)
in Section 2. Also, the entry m1 = m2 = 0 in (39) does not contribute to this limiting derivative, (41). The
remaining terms produce, again as in Section 2,

@p1+p2G(~z)

@z
p1
1 @z

p2
2

= p1!p2!

q1X
m1=0

q2X
m2=0

D ~m
~u F

m1!m2!

X
~~s

X
~~s
0

µ
m1

~~s

¶µ
m2

~~s
0

¶ Y
~n2A2

µ
D~n
~z u1

n1!n2!

¶s~n Y
~n02A2

Ã
D~n0

~z u1

n01!n20!

!s~n0

(42)

with m1 ¢m2 6= 0, ¾(~~s) = m1, ¾(~~s
0

) = m2, and where ¿1(~~s;~~s
0

) = p1, ¿2(~~s;~~s
0

) = p2 couple the pair of double

sequences ~~s;~~s
0

through the de¯nition (40). The only surprise is that both of the ¿ conditions depend on
two sequences jointly, greatly complicating the results. The entry ~m = (0; 0) must be omitted from the
summation in (41).

The extension to vector ~F and ~G is as in Section 2. As before, the indices q1; q2 can be replaced in (42) in

the transition from (21) to (4), by p1; p2, and the domain A2 of ~~s and ~~s
0

is then f0; 1; : : : ; p1g£f0; 1; : : : ; p2g
instead of f0; 1; : : : ; q1g £ f0; 1; : : : ; q2g, when calculating derivatives of order (p1; p2). From (42) it is easy

to guess the correct Bruno formulas for D~p
~zG(~z) = D

~p
~zF (~u(~z)) where ~p = (p1; : : : ; pN ), ~z = (z1; : : : ; zN),

~u(~z) = (u1(~z); : : : ; uM (~z)), and F;M;N are arbitrary.
Brie°y, describing Bruno formulas for functions of, say four variables, there are four single summations

and four quadruple summations, limited by eight conditions, four of which are fully cross-coupled. There
are Taylor-like terms on the outside function, four generalized binomial coe±cients, and four sets of Bruno
products, each formed over a quadruple cartesian product of indices. All of this goes to calculate a single
partial derivative by the chain rule.

5. Symbolic Computing Aspects

The use of a symbolic manipulator, such as Maple or Macsyma, can easily produce higher-order di®er-
ential results. However, it achieves these results by recursively applying a chain rule. While this is entirely
correct, the outputs are often quite messy and further manipulation is needed to simplify the results. If only
a select number of terms are needed, one then has to go back and try to weed out such terms. But utilizing
the Bruno formulas, one can easily isolate the needed terms, and they are already simpli¯ed.

As an example, a double vector laplacian was performed using the Bruno formulas and again by brute
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force (i.e. by recursive application of the chain rule). The Bruno results were fairly clean and organized,
while the brute force outputs had to be tediously manipulated to reproduce the same results. An additional
advantage is that the Bruno formulas can be written in a clean, closed-form notation that can be partially
manipulated before the need to evaluate them.

The double vector laplacian was computed using Macsyma since the functional dependencies can be
suppressed (this is only for compactness of notation purposes). Once all the dependencies are set up (using
subscripted variables, say (x1; x2; x3), instead of variables with di®erent labels, say (x; y; z), of course) it

is just a matter of implementing (42). Some care must be taken to make sure the condintions ¾(~~s) = m1,

¾(~~s
0

) = m2, ¿1(~~s;~~s
0

) = p1, and ¿2(~~s;~~s
0

) = p2 are satis¯ed. One approach to solve this problem is to sum over
all possible indices and introduce coe±cients that have the value of one when they are satis¯ed and zero
when the conditions are not satis¯ed.
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