1. Faa di Bruno Formulas

Around 1850 interest in new special functions was strong, and formulas for higher derivatives of [ f(x)]",
[f(x)]~!, and log[f(x)] were produced, both for special and general choices of f(z). Faa di Bruno trumped
these formulas by publishing a general higher-order chain rule [3] for pth derivatives of G(z) = F(u(z)):
G (z) = (dilz)p F(u(z)), in terms of F™ (u(z)), and, u(™(z), where 1 < m < p and 1 < n < p. Most
applications were, and still are, for 2 < p < 4. Exceptionally, p = 5 or 6, in statistical or plasma
physics. Bruno’s condensed formula for general p > 1 involves a (p+1) dimensional summation over indices
m, ki, ky, ... k, with 0 <m <pand1<Fky,ky,...,k, <p,subject to two coupling conditions:

op(k) = ki+ka+-4k,=m (1)
(k) = ki+2ke+---+pky=p (2)
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These products appear in the Bruno formula for one intermediate variable and also in our multivariable
analogs. The formula itself is, on recalling (1 — 3), takes the compressed form

p _ d\?”
el )(Z) = (E) F (u(2))
- 2;1 kz;l o kz;l F (u(2) By, (u(2)),  op(k) =m, 7(k)=p n

For p = 3(4) the number of additive terms in (4) under the o and 7 conditions are 3(5), respectively, each
term with 3(4) symbolic multiplications involving the derivatives of F(u) and Bruno products, plus numerical
coefficients. Thus for functions of one variable, printing out the full expressions of p(z) for p = 3(4) is quite
efficient, compared to the use of (4).

In the multivariable analogs, even for p = 3(4), the number of additive terms becomes awkward and the
derivation of the terms somewhat tiresome. This is evident already in the 2x2 case @(Z2) = uq (21, 22), u2(21, 22).
A “compressed” Bruno formula becomes more attractive as the multivariable dimensions m for @ or n for Z,
and the order p is increased. Also, it can be used for symbolic computation instead of recursive application of
the standard first-order chain rule. Certain features of the multivariable general chain rule, such as the type
of cross-coupling between different intermediate variables in the 7 conditions, are possibly more illuminating
in a Bruno-type formula than in the full expression. Obviously, “pure” derivatives, such as &Ga;}il, are
easier to deal with than mixed derivatives like —af’; an 7 which cannot always be avoided, as in calculation of

(V2)2 terms for elasticity and fluidics.

2. Proofs of the Single-Variable Bruno Formula

Bruno [3] has only a hazy proof of (4), neither rigorous nor algorithmically convincing. Koénigsberger [7]
derived a more difficult formula for the general problem of calculating higher-order differentials, d f (21, . .., 2n),
using a symbolic calculus and induction. Since differentials are invariant under differentiable transformations,
this in principle should yield multivariable chain rules. However, higher differentials package together a vari-
ety of different orders of derivatives, which yield a Bruno formula conveniently only in the case M = N = 1.
But for that case, Koénigsberger’s proof also is an inductive proof of (4), as Bieberbach [2] pointed out.
Somewhat later, de la Vallee Poussin [4] produced a concise proof of (4), based on a weak form of the
Taylor expansion with remainder and a weak uniqueness theorem for “almost” power series of the form
ap+arh+ -+ ag_1h?t + M,(h)h4, where M,(h) — a, as h — 0 and M,(h) is bounded in h for small h.



That proof is less elementary than a longer one based on the integral form of the Taylor remainder, which
latter can be made quite explicit, at the cost of assuming slightly more regularity than the minimum needed.
The integral remainder version can be generalized quite well in the multivariable context.

An American book with a good collection of higher-derivative formulas, including many infinite series, is
Schwatt [8]. Oddly, he does not list the Bruno formula, only various substitutes oriented to special cases of
interest, and has little on the important topic of asymptotic series for higher-order derivatives, of interest in
statistical mechanics (Fowler [6]).

Symbolic manipulation on computer via Macsyma, Maple, Mathematica, etc. can produce any required
order of Bruno or Schwatt formulas. As shown later, a multivariable symbolic program produces multivari-
able versions of such formulas. In another direction, similar formulas appear in the Whitney [9], Dieudonné
[5] theories of extensions of differentiable functions. See Abraham and Robbin [1] for a detailed account.

3. Integral Remainder Proof of the Bruno Formula
If u(z) and F(u) are ¢ + 1 times differentiable in suitable domains, the qth order Taylor expansions with
integral remainder are given by

Flutj) = Z il TUE (w) + Ry <F<q+1>(u), u, j) (5)
9 pn
u(z+h) = Z Fu(n)(z) +R, <u(q+1)(z), 2, h) (6)
n=0
where
1 v+k
Ry, (Y, v, k) :H / (v+k —y)PY (y)dy, p=0,1,2,... (7)

is the integral remainder.
Based on (5 — 7), it will be shown that G(*)(z) is given by (4) for p < ¢. This will follow from

q

G(z+h) = Z

p=0

Sy (G, 2, h) (8)
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where g, () is given by the Bruno formula (4), and the fact that

lim (%)psq((;,z,h)—o, 0<p<gq 9)
First, (8) and (6) imply that
GP)(z) = lim (ﬁ)p G(z +h) = lim (ﬁ)p F (u(z +h)) (10)
h—0 \ Oh h—0 \ Oh
Second, setting j = j(z,h) = u(z + h) — u(z), formulas (5) and (6) yield
a F(m) 9 pn "
F(u(z+ h)) = Z lZ—u(") 2)+uRy| + FRy (11)
=0 —1

where the remainders, R, pR, are given (in the notation of (7)) more precisely by
Ry = Ry <u(q+1)(z),z, h) (12)

rFR; = Ry <F(q+1)(u),u,j)

u=u(z)



Multinomial expansion of the terms inside the brackets in (11) permits rewriting (11) as

q m
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Each Bruno product term in (14) comes with the exponential hra(k) . Te(k) = k14 2ko + - - + gky,
and the power (,R,)" as factors. Thus application of lim_q (E%)p to (14) reduces it to linear combinations
of limy,_,o ((%)p [th(;;) (TRq)T} =p! 6(r,0) 6(p, Tq(E) and limj,_,q (%)p (FRy) =0, for p < gq.

The latter result follows from Leibnitz’s differentiation rule: for ¢ > 0

u+j(z,h)
(% [FRq(u, )] = (% [% L [w+j(z,h) — y] F(‘H'l)(y)dy]
- %%{ [ut (2 h) = (ut Gz W) FO (ulz + 1))

u+j(z,h)
+q/ [u+34(zh) —y]"lF(q“)(y)dy}
= [FRe-1(w,j)] u'(z+h) (15)

However, 4 [rRo] = F@*V (u(z + h)). (This recursion resembles that for derivatives of T, (h) = C’%, a

simple special case of the Faa di Bruno formula). Since limy_¢ pRo(u,j) = limp—g f:+j(z’h) FtD (y)dy =
limy_o [F9 (u(z + h)) = F@ (u(2))] = 0, induction of (15) easily yields

. AN
g%(%) (FRy) =0,  for ¢>0, p<gq (16)

A special case of the above argument, with F' replaced by u, u replaced by z, and j replaced by h, leads to

(37 Bt = 121 (17
and
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Leibnitz’s product rule then produces
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and thus



If > 0, every term in the finite Leibnitz expansion of the above derivative (if p > T(E)) will contain R,

itself (and its derivative) which tend to zero with h. If » = 0, the limit is zero unless p = T(E), in which case
it is p!, as stated previously.
Insertion of these limits in (14) gives
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21)
which is close to (4). However, if p < ¢, then Tq(E) =ki+2kos+ -+ pkpy + (p+ Dkpp1 + -+ gkg =
implies that in the summation, all indices kp41,...,k, must be zero. For if any of them is non-zero, 7,
will exceed p. This adjustment in the summation limits and indices from ¢ to p converts (21) into (4). The
proof can now be modified for the multivariable situation.
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4. Multivariable Bruno Formulas - Two Variable Proof
The basic first order multivariable chain rule formula for G(Z) = F (u(%)), with scalar F, where (%) =

(u1(2),...,up (%)) and Z = (z1,...,2n), is of course
0G N OF (i) duy(2) B
or just
D:G = (Dyg) (Dzti) (23)

where (Dz#),, is the kth column of the (M x N) first derivative matrix, Dxi.

If Fisa L-component vector of functions, then DzF isan L x M matrix, and in matrix form the first
order chain rule is again

DG = (D F) (D:) (24)

a=1(%)
The formulas (23) and (24) can be iterated by symbolic computation to produce all partial derivatives of
the form

81- 81- 81- G(Z)=D 2(? where 7 = (i1,4a,...,in) (25)
021" 0z 0z

A few programming tricks can help considerably in producing convenient print-outs. This approach will
be discussed in Section 4, following a derivation of a condensed form of the result, resembling (4), from
the Taylor expansion with integral remainder method of Section 2, limited to the case M = N = 2 with a
scalar F, so that G(z1,22) = F (u1(21, 22), us(21, 22)), the basic two-dimensional scalar version of the Bruno
problem. This result, of some interest for its exact combinatorial form, is useful in checking that a symbolic
program is producing the right numerical coefficients as well as the right algebraic expressions. The general
M, N case is similar, and the results will be merely described.

The obvious application of the 2 x 2 case for derivative orders p = 2,3,4 is to physically meaningful
two-dimensional Laplacians, and to curls and repeated curls. For orthogonal coordinates, such as polar,
confocal, elliptic, the results are well-known and more easily found by variational integral methods. When
coordinates are significantly non-orthogonal or non-conformal, or only isolated partial derivatives are needed,
an approach by computer iteration or -as detailed here- by Taylor series plus coefficient matching, appears
preferable to Konigsberger or Dieudonné methods.

The first stage is to obtain a “double integral” remainder form for a double Taylor expansion. Let

q1 q2 hml hm2 .

f(z1 4+ hiyzo + ho) = Z Z m1|m2 2 f(2) + Ry g (26)

m1=0 mo=0



where the form of Ry, 4, is to be determined. If f has the product form fo(z1,22) = fi1(21) f2(22), then

fo(z1 + ha, 20 + he) = f1(z1 + h1) fa(22 + h2)

q1 m q2 m
hm hpe
= (Z - [ DI fi(21) + Ry, (Dg;“fl,zl,hl)) (Z . | D2 fa(22) + Ry, (Dgg+1f2,22,h2)>
m1=0 mo=0

q1 q2 hml hmg

- Z Z m1|m| ZILIZ’ZLQfO(ZhZQ) (27)
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from the integral remainder formula for functions of one variable. Since

D7 f1(21) DE fa(y2) = DI fo(21,2) (28)
and
D72 fo(22) DI fi(y1) = DIFEL™ folun, 22) (29)
the remainder can be written as
1 & pethe pm
Roan (D=5 30 [ B ot ha = g0) DI e, ) (30)
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42 Jz .

for f = fy. Clearly, (30) contains two simple sums of single integrals of mixed derivatives and one double
341+1+42+1 t

integral of mixed derivatives, which holds when f is multiplicatively separable and T is continuous

41+18
jointly in z; and z5. Note that for ¢; = gz = 0, formula (30) reduces to

SO f (1, 2) sthe 8f 21 Y2) ath 22 the 92 F(yy,y0)
Ry = AN ALY 1222 dyy 222 dyy d 31
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where hopefully
f(z1 +h1, 20 + he) = f(21,22) + Roo (32)

for non-multiplicative functions f. For h; = hg = 0, (31) holds for all f such that %y%) is continuous.
Fixing ho,

ORoo f 2102 92 (1, 2)
= ——(y1.92) + / ——"""dys
O % yi=z1+h1 72 Oy19y2 y1=z1+h1
0 0 0
= 8—f(y1,112) + [8—f(y1,2z+h)—a—f(y1,22)}
v y1=z1+h1 4 v y1=21+h1




0
8—f(yl) Zz + h) (33)
4 y1=z1+h1
and similarly
ORo  Of
= —" (2 + hq, 34
Ohy — Oys (21 + h1,92) o (34)
Consequently,
A I a\"™ /o \"
(8h1> (8h2> Ry = (8h1> (8h2> f(z1+ ha, 20+ ho)
o\ o\
= (8—h1> (8—h2> f(1,92) (35)
y1=21+h1,y2=22+hs

if k1 + ko > 0, and the requisite derivatives exist finitely. It follows that f(z1 + hi, 22 + h2) = f(21,22) + Roo
as hoped. Taking this as the starting point of a double induction, whose inductive hypothesis is the Vahdlty
q1+1+4q
of (30) for a general f such that putit 2;2“ is jointly continuous, application of (30) to Of Of and 9L
yields (30) for f with orders (g1 + 1, q2), (ql, g2+ 1), and (¢1 +1,¢2 + 1). This establishes the desired double

l11+18 O0z1? Oz 021022
induction on f, and with it a Taylor series integral remainder formula for functions of two variables which

P1 P2
the writers have not seen elsewhere. Application of <8h ) <aih2) to LRq .. for p1 < q1, p2 < g2 and

fairly general L shows as in Section 2 that

8 P1 8 P2
hlﬁ%f&ﬁ() (8—h1> (8—h2> LR, .4, =0 (36)
This is applicable to remainders of F(u,us) and of uy (21, 22) and ug (21, 22), provided that %Z‘;—“ﬁl

§i1+az+2 ( ) .. . . . . .
and ql+1;” =2 are jointly continuous functions of their two arguments. Having gained the desired

mtegral remainder theorems, the rest of the proof is straight forward. .
Suppose F(uq1,us), ui(z1, 22), and us(z1, 22) are approximated to order (g1,¢2). Then if j, = us(Z+h) —
us(2) for s = 1,2, and gRy, 4, and , Ry, 4, are the “integral remainders” exhibited in (30) for f = F,uq, us.

F(@+7) = F(ui(z1+hi, 22+ ho),us(z1 + ha, 22 + ha))
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where the § summation is over double sequences sy, n, = Sz, for n1 = 1,2,...,q1, no = 1,2,...,¢o (since

N = 2). Thus § maps A; = {1,2,. ..,ql} x {1,2,...,q2} onto {0,1,... ml}, such that o(5) = Y - sq =

my — t1. The symbol (s tl) =7 'H .. A like formula holds for j3**. Combining that with (37) and
Ul laca, 57

(38) yields
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3 = 12 .
Tj:Tj(S,S): E anﬁ+ E anﬁ/, ]:1,2 (40)
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and Ay = {0,1,...,¢1} x{0,1,...,¢2} (or a suitable subset of it). On taking

8P1+P2F <7I + j(g, ﬁ))
lim lim

h1—0 h2—0 O Ohb?

(41)

all terms in (39) with ¢; > 0 or ¢ > 0 tend to zero, as does Ry, 4,, by iteration of the calculations (11 —20)
in Section 2. Also, the entry m; = my = 0 in (39) does not contribute to this limiting derivative, (41). The
remaining terms produce, again as in Section 2,

8P1+P2G g1 92 m m D? Sk Dg/ Spr
821’1821’2 = p1!p2! Z Z ml%.ZZ( 1)( 2) H (n1!§;!> H <n’1!n$!) (42)

m1=0mz=0 neAs n'eAy

with my - mg # 0, a(g') =ma, a(?) = Mg, and where 7 (g’,g’/) = p1, 7'2(? 3) = po couple the pair of double
sequences §,§'4 through the definition (40). The only surprise is that both of the 7 conditions depend on
two sequences jointly, greatly complicating the results. The entry m = (0,0) must be omitted from the
summation in (41).

The extension to vector F and G is as in Section 2. As before, the indices g1, g2 can be replaced in (42) in
the transition from (21) to (4), by p1,p2, and the domain As of Fand 7 is then {0,1,...,;p} x{0,1,...,p2}
instead of {0,1,...,q1} x {0,1,...,g2}, when calculating derivatives of order (p1,p2). From (42) it is easy
to guess the correct Bruno formulas for DgG(Z) = DgF (i(2)) where § = (p1,...,pn), Z = (21,.-.,2N),
w(Z) = (u1(2),...,upm(2)), and F, M, N are arbitrary.

Briefly, describing Bruno formulas for functions of, say four variables, there are four single summations
and four quadruple summations, limited by eight conditions, four of which are fully cross-coupled. There
are Taylor-like terms on the outside function, four generalized binomial coefficients, and four sets of Bruno
products, each formed over a quadruple cartesian product of indices. All of this goes to calculate a single
partial derivative by the chain rule.

5. Symbolic Computing Aspects

The use of a symbolic manipulator, such as Maple or Macsyma, can easily produce higher-order differ-
ential results. However, it achieves these results by recursively applying a chain rule. While this is entirely
correct, the outputs are often quite messy and further manipulation is needed to simplify the results. If only
a select number of terms are needed, one then has to go back and try to weed out such terms. But utilizing
the Bruno formulas, one can easily isolate the needed terms, and they are already simplified.

As an example, a double vector laplacian was performed using the Bruno formulas and again by brute



force (i.e. by recursive application of the chain rule). The Bruno results were fairly clean and organized,
while the brute force outputs had to be tediously manipulated to reproduce the same results. An additional
advantage is that the Bruno formulas can be written in a clean, closed-form notation that can be partially
manipulated before the need to evaluate them.

The double vector laplacian was computed using Macsyma since the functional dependencies can be
suppressed (this is only for compactness of notation purposes). Once all the dependencies are set up (using
subscripted variables, say (r1,22,3), instead of variables with different labels, say (z,y, z), of course) it
is just a matter of implementing (42). Some care must be taken to make sure the condintions a(g') =my,
0(3) = Mg, T1 (g', ?) = p1, and 7, (g’, g'/) = po are satisfied. One approach to solve this problem is to sum over
all possible indices and introduce coefficients that have the value of one when they are satisfied and zero
when the conditions are not satisfied.
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