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Abstract

We have been talking about the use of computer algebra systems in

teaching calculus. I believe we should pay attention to the incorporation

of CAS in post calculus courses. In this note I shall demonstrate how easy

it is to create teaching materials to enhance students' learining with the

help of Scienti¯c Workplace in Advanced Calculus.

1 Introduction

Abstract and complex concepts can be taught and experimented with the help
of computer algebra systems. Especially, a di±cult course such as Advanced
Calculus, teachers usually want students to imagine what a complex plot would
look like, which may not be so trivial. In this note, I use the following examples in
Advanced Calculus with the help of Scienti¯c Workplace(SWP) to demonstrate
how the computer algebra system can be used to enhance students' learning. We
note that SWP is not only a wordprocesor but also a computational tool. Thus it
can be used in experimenting mathematics without reqiring users to learn Latex
and Maple syntax.

2 How do we experiment and construct a function which

is nowhere di®erentiable but everywhere continuous?

In advanced calculus, we learned that if

f (x) =
1X
k=1

ak cos bk¼x

where a and b satisfy certain relationship, then we can prove that the function
is nowhere di®erentiable but continuous everywhere. In this note we shall use the
graphing approaches to discover how the behavior of a=b will lead us to a desired
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nowhere di®erentiable but continuous function. For a detailed construction, see
[1]. We know we can't plot an in¯nite series of functions but we can use the
partial sum to predict the graph of an in¯nite sum. Thus, ¯rst we de¯ne the
partial sum function as follows:

F (a; b; x; n) =
nX

k=1

ak cos bk¼x:

By setting a = 1=2; b = 2; and n = 20, we graph the function
F (1=2; 2; x; 20)
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Let's increase the partial sum from n = 20 to n = 30, and we obtain the following
graph.

F (1=2; 2; x; 30)
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By zooming in many times, we obtain the graph of F (1=2; 2; x; 30) again as
follows:
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Notice that for a = 1=2, and b = 2, even if we increase the partial sum,
we don't have a function that oscillates as much as we want yet. Therefore, we
consider to increase the ratio of b

a
from 4 to 8 as follows:

F (1=2; 4; x; 30)
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Note that it oscillates more than the previous graph, but still not as much as
what we like. We zoom in the graph of F (1=2; 4; x; 30) as follows:

F (1=2; 4; x; 30)
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We see that the function, F (1=2;4; x;30) does have more spikes than that of
F (1=2; 2; x; 30). Finally, let's graph F (1=2;8; x;30) as follows:
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F (1=2; 16; x; 30)
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This looks like what we want. Therefore, from this worksheet, we learn that
to make a highly oscillating trigometric function, such as

P
1

k=1
ak cos bk¼x, to be

nowhere di®erentiable, the key is not to increase its partial sum but to increase
the ratio of b

a
.

3 If the derivative of a function is positive, then the func-

tion is increasing?

We see a theorem in advanced calculus like the following:

Theorem 1 Let f be a function de¯ned on (a; b). Suppose that f is di®erentiable

at c 2 (a; b) and f 0(c) > 0. Then there is a number ± > 0 such that f(c) < f(x)
if x 2 (c; c+ ±) and f(x) < f(c) if x 2 (c¡ ±; c).

We note that it does not say that if f 0(c) > 0, then there is an interval about
c on which f is increasing. For example, let

f(x) =

(
x + 2x2 sin(1=x) ifx 6= 0
0 ifx = 0

Then f 0(x) = 1 + 4x sin 1

x
¡ 2 cos 1

x
if x 6= 0. (Note that this is computed

directly by using Evaluate f 0(x).). We can see that f 0(0) = 1 by the following
computation:

lim
h!0

f(0 + h) ¡ f(0)

h
= 1:

Thus f 0(0) > 0, it follows from the theorem that there is an interval (¡±; ±)
so that f(x) < f (0) if x 2 (¡±; 0), and f(x) > f(0) if x 2 (0; ±): In particular, we
can take ± = 1

2
and see that f is not increasing in the neighborhood of x = 0: We

can also graph the function f as follows to understand this behavior of f . The
following graph of f is obtained by zooming in many times:
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Notice that the function is oscillating near x = 0. This says that the function
is not increasing around x = 0. We also note that the derivative function is also
oscillating near x = 0. We graph f 0 as follows:

f 0(x) = 1 + 4x sin 1

x
¡ 2 cos 1
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