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1 Introduction

Inverse problems are important and widespread in industry, but they are con-
spicuously absent in the mathematics curriculum. To make our courses more
relevant, we should make an e®ort to include coverage of inverse problems.
This paper will present an example of an inverse problem which is suitable
for a di®erential equations class.

2 What is an inverse problem?

A very loose de¯nition of an inverse problem is that an inverse problem is a
problem which is posed opposite of the direct problem. An example which
should be familiar to most people is the Jeopardy game show. In Jeopardy,
you are given the answer and must supply the question. This is the opposite
of the way most quiz shows operate. In a more mathematical vein, a classic
inverse problem is the brachistocrone problem (John Bernoulli 1696) :

Of all curves joining two points in a vertical plane, ¯nd the one
along which a particle sliding from rest without friction takes the
least time to descend.

This inverse problem led to a new branch of mathematics (the calculus of
variations) to achieve its solution. In this short paper, it will not be possible
to even scratch the surface of the variety of inverse problems that exist. The
interested reader should consult the excellent annotated bibliography in [2].
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2.1 Mathematical Features

The distinguishing mathematical aspect of inverse problems is that they are
usually ill-posed. Ill-posed means that an inverse problem will generally
violate one or more of the properties of a well-posed problem as de¯ned
by Hadamard [4]. He stated that for a problem to be well-posed it must
have a solution, that solution must be unique and stable with respect to
perturbations in the data. Inverse problems often have no unique answer
and are usually unstable.

At this point you may be asking yourself, if there is no unique answer
to the problem or the answer is unstable, how does one achieve any useful
information? To resolve the ill-posedness one usually has to supply some
prior knowledge of the desired solution. For example, when one does a least
squares ¯t to data one computes a solution to the normal equations that is
as close to a solution to the original problem as possible. In other words, one
has to specify what quali¯es as a solution in advance of the computation.

2.2 Are inverse problems important?

Inverse problems are very important in industry. For example, medical imag-
ing techniques such as NMR, MRI, CATSCAN, and impedence imaging are
all based on solving some type of inverse problem. Other important areas of
application include geophysical prospecting and nondestructive testing. This
list of applications is by no means exhaustive.

Inverse problems may also be used as an important teaching tool in the
classroom. Solving these problems involves more creativity than solving the
standard direct problems, making them more intellectually challenging. The
solution to an inverse problem cannot generally be accomplished without
employing a computer, which allows us to make use of appropriate technology
in a meaningful way. Solving an inverse problem may also enable students
to better understand the direct problem on which the inverse problem is
based. Finally, inverse problems provide an excellent opportunity to bring
interdisciplinary materials into the math classroom.
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3 An example problem

In this section we present an inverse problem based on the familiar second
order ordinary di®erential equation that is used to model harmonic motion.
The problem posed will no be solved in full generality since the point of
this paper is to introduce the idea of what an inverse problem is. Instead
the assumption will be made that the problem is overdamped or critically
damped. The underdamped case may require modi¯cations to the approaches
presented. This problem could easily be incorporated into most di®erential
equations classes.

Devise a method of recovering the coe±cients in the 2nd order
ODE

mx00(t) + bx0(t) + kx(t) = f(t)

from measurements of x(t). You are free to select initial condi-
tions and function(s) f(t) in any manner you see ¯t. You may as-
sume that the solution to the homogeneous equation approaches
zero over time.

4 Two approaches to the solution

4.1 A data ¯tting method

Keeping in mind that this enterprise will go easier if some use of a priori
knowledge is made, it is decided that f(t) = t2 may be a good choice for the
right hand side since this choice leads to a particular solution

xp(t) =
1

k
t2 ¡

2b

k2
t¡

2m

k2
+
2b2

k3
:

If we let the system run until xp(t) is dominant, then perform a least squares
¯t of the form a2t

2 + a1t + a0 to the data and solve for m; b; k from the
computed values a2; a1; a0. Clearly, using this approach the initial conditions
are not particularly important.
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4.2 Results for method one

An experiment usingm = 1, b = 10, and k = 49 was run. Data was generated
using ODE45 (in MATLAB, see the m-¯les in the appendix) to numerically
determine the solution to the example problem with a tolerance of 10¡6. A
least squares ¯t was performed on the data to determine values of a2; a1; and
a0 from which m;b; k were determined to be m = :9875, b = 10:0065, and
k = 48:9983.

4.3 A nonlinear equation method

In this method, three di®erent forcing functions of the form F0 cos(!t) are
used and the amplitude of the resulting steady state is measured. The ana-
lytic solution should have an amplitude

A(m;k; b) =
F0q

(k ¡m!2)2 + b2!2

:

From three di®erent ! values, a 3 £ 3 system of nonlinear equations is ob-
tained. This system of equations can be solved form;b, and k using Newton's
method. This approach has the advantage over the other method in that it
could be easily be realized as an RLC circuit. In this case, real data could
be gathered. Once again, the initial conditions are not important.

4.4 Results for method two

The forcing functions f1(t) = cos(!t) for ! = 1;2;3 were used on the same
problem as above. The amplitudes corresponding to these forcing functions
were computed and some noise was added to the data to simulate measure-
ment error. The nonlinear system of equations was solved using Newton's
method with the results m = :9856; k = 9:9457, and k = 49:9930.

5 Summary

The nature of inverse problems and their importance in industry and in the
classroom was discussed. A sample problem and two possible avenues to a
solution were demonstrated. The latter method could be used as a laboratory
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problem. In addition to reinforcing knowledge of the direct problems, these
projects use common numerical techniques which is a valuable experience.
We ought to do our best to make good use of technology in our classes.
Towards this end, we should introduce projects which require it and which
re°ect to some degree the way it is used outside of an academic setting.
Projects based on inverse problems meet these criteria.
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A MATLAB m-¯les

A.1 M-¯les for the ¯rst approach

The ¯rst m-¯le is a script ¯le for generating data via the numerical solution
of the sample problem and performing the ¯t using the MATLAB command
poly¯t. The second m-¯le is a function necessary for use with the MATLAB
routine ode45.

odeinv1.m

tol=10e-6; t0=0; tf=5;

f='yp'; y0=[1;0];

[T,U]=ode45(f,t0,tf,y0,tol,1)

q=length(T);

x=T(q-20:q); y=U(q-20:q,1);

p=polyfit(x,y,2);

yp.m

function yprime = yp(t,y)

% This function is necessary for solving the sample problem

% using ode45. See MATLAB documentation for the use of ode45.

yprime(1)=y(2);

yprime(2)=t*t-10*y(2)-49*y(1);

A.2 M-¯les for the second approach

The ¯rst m-¯le is a function used to evaluate the Jacobian of the function
in the second m-¯le. The third m-¯le computes the amplitudes of the ana-
lytic solution. The ¯nal m-¯le is a script which computes the solution via a
simpli¯ed version of Newton's method.
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jac.m

function y = jac(m,b,k,w)

% Evaluate the Jacobian for the example problem.

% m,b,k are scalars. w is a vector of 3 elements

% containing the frequencies of the data.

% jac(m,b,k,w)

y=zeros(3);

for j=1:3

denom = ((k-m*w(j)*w(j))^2+b*b*w(j)*w(j))^(3/2);

y(j,1) = (k-m*w(j)^2)*w(j)^2/denom; % derivative wrt m

y(j,2) = -b*w(j)*w(j)/denom; % derivative wrt b

y(j,3) = (m*w(j)^2-k)/denom;

end

F.m

function y=F(m,b,k,w,amp)

% F(m,b,k,w,amp) where m,b,k are scalars

% representing the unknown quantities,

% w is a vector with 3 elements containing the

% frequencies of the forcing functions used, and

% amp is a constant vector with 3 elements.

y=zeros(3,1);

for j=1:3

y(j) = 1/((k-m*w(j)^2)^2+b^2*w(j)^2)^(1/2) - amp(j);

end

camp.m

function y=camp(m,b,k,w)

% camp(m,b,k,w) where m,b,k,w are scalars.

% returns the amplitude of the solution to

% a 2nd order ode mx"+bx'+kx=cos(wt).

y=1/((k-m*w^2)^2 + b^2*w^2)^(1/2);
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odeinv2.m

for j=1:3

amp(j) = camp(10,3,49,j);

end

w=1:3;

x=ones(3,1);

noise=2*rand(3,1)-1;

amp2=amp'+.001*noise*max(amp);

for i=1:10

x=x-inv(jac(x(1),x(2),x(3),w))*F(x(1),x(2),x(3),w,amp2)

end
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