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Abstract

The HP-48GX is used to investigate features of a
function of n variables arising in the context of a
nonlinear optimization problem in operations research. 
Interestingly, the function involves both discrete and
continuous variables.  The optimal solution requires
not only determination of the values of the continuous
variables but, more interestingly, also the number of
variables per se to include.  Special attention is
directed to the investigation of the domain and
monotonic properties of the function.

__________

The technology supporting this presentation is the HP-
48GX, referred to as a handheld computer, as a
supercalculator, or (and seemingly least appropriately)
as a calculator.  Various other, but necessarily
judiciously chosen, forms of supporting technology
could satisfy our present computational demands.  Our
intention is not to make the case for one form of
computational device to be used over another.  In the
present context the HP-48 meets our needs acceptably
well.

Our intention is to demonstrate how technology, such as
the HP-48, might assist a mathematical
investigator/researcher in carrying out certain
mathematical analyses.



We deal with a real-valued nonlinear function of
several variables, having the form:

Here, N is a positive integer and the x's represent
probability values between 0 and 1.  The particular
version of this function with which we deal arises in
the theory of detection or searching procedures. 
Perhaps the most appropriate general field to which
this function belongs, indeed with respect to its
application orientation, is operations research.  

The context in which we describe the use of this
function is as follows.  Suppose there are finitely
many different ways in which to carry out a successful
(feasible) search.  Each leads (it turns out) to a
value of the integer N in the function f above, and
then, accordingly, to N variables, namely the
subscripted x's, and their properly assigned values. 
For example, there may be three feasible searches where
one involves 11 variables, another 12, and the last 13. 
Then N = 11, 12, and 13.  Of the finitely many
different successful/feasible searches, we ask which is
optimal?  Here, "optimal" will mean "maximizes the
probability of acquisition at all times during the
search and the least amount of time is consumed in
performing the search" (see [1]).

Omitting further specific contextual or circumstantial
details, the aspect of the searching procedure we seek
in the mathematical model with which we deal is the
value of N that will make A least, where

Or, equivalently (see [1])



In the above, P(D) represents the probability of
detection on one "look" or "pass", and P(A) represents
the desired probability of acquisition, i.e., actually
locating the object for which the search is conducted. 
Finally, A represents the total area to be searched,
where searching a given region often (more than once)
counts the revisited area (in the total area searched)
as often.  Of the different acceptable (feasible)
choices of N, our focus is to find the N that will make
A least.  In other words, of the feasible solutions, we
seek the optimal one, i.e., the optimal feasible
solution (to use popular operations research language).

Notice in (ii) that A is a function of N variables, the
x-values.  In (iii) A, conveniently re-expressed,
depends on the choice of P(D), P(A), and N.  The reader
should know that the possible values for N are
predetermined by P(D) and P(A).

After some thought the investigator might come to
conjecture, as this one did, that the value of N for
which the feasible solution is optimal is the largest
value of N for which there is a feasible solution. 
(Let us interject that this paper is not about how to
find any one feasible solution.  For that see [1] and
[2].)  And the use of a computational device can
greatly assist the researcher in arriving at this
conjecture, the main point of this paper.  In fact, a
computational or effective graphical device might
suggest to the investigator that A is a monotonically
decreasing function of N.  We note then that the
optimal solution will be the largest value of N for
which there is a feasible solution (for the search is
completed most rapidly if the total area, A, to be
searched is smallest).  The author has, in fact, proved
that the largest N is optimal in the case of restricted
domains of f, namely when P(D) > 3/4 and P(A) is
unrestricted.  See [2].

It appears that A is monotonically decreasing for a
wide range of other P(D) values as well.

To see why one might want to turn to a computational
device to assist in the analysis of the function
expressed by (iii), the reader might try to show by



hand methods, thinking of N as a continuous variable,
that the derivative of A with respect to N is negative
over the feasible values for N.  In this context think
of P(D) and P(A) as constant probability values, i.e.,
and more precisely, think of them as arbitrary but
fixed probability values.  The expression for the
derivative is, one is likely to conclude, complicated
and difficult to analyze.  If the reader has an HP-48,
have the HP compute the derivative.  For reader
convenience, the derivative is shown in HP syntax on
the back pages of this paper.

One might numerically investigate the behavior of the
derivative of A with respect to N using a Monte Carlo
approach.  Special interest is in order for the case
when values of P(D), assigned randomly, are less than
or equal to 3/4, and where arbitrary but fixed
probability values of P(D) and P(A) are assigned,
again, at random.  To accomplish the latter, one might
create a program that generates random input values and
then evaluates the derivative of A.  If the derivative
is negative for random values of the variables--of
course, N must be restricted to an appropriate set of
values (see [2])--one might conjecture the derivative
is always negative.  Of course, this would not
constitute a proof that the derivative is always
negative--that A is a monotonically decreasing function
of N for fixed P(D) and P(A)--but it does provide
strong evidence for making that conjecture.

Another approach leading one to conjecture that A is
decreasing as a function of N--this time thinking of N
as a discrete, integer-valued variable--would be
achieved by using expression (iii) above and forming
the ratio obtained by setting N = n + 1 divided by the
expression obtained when N = n.  Should the ratio below 

always be less than 1 for all appropriate choices of n
and fixed values of P(A) and P(D), then again one would



be led to conjecture that A is a decreasing function of
N for the fixed P(A) and P(D) employed, i.e., the
optimal feasible solution appears to be obtained for
the largest feasible N.  See [2] to determine bounds
for N which, as has been said, depend upon the input
values of P(D) and P(A), i.e., see [2] to determine the
appropriate domain values of N.
_______________
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