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There are several direct, elimin ation, and iterative methods for

solving systems of n equations in n variables.  We will use MATLAB

students version 4 to compare these methods.  For large n the best

methods for solv ing Ax = b are Gaussian elimination and Gauss-Jordan

elimination meth ods each of which requires approximately  

multiplications and    additions.  The method of multiplication

by A  is much worse than these and Cramer's rule is the worst of-1

these 3 methods.  For sparse matrices, Jacobi and Gauss-Seidel

iter ation methods are very useful because the zeros simplify the

iteration equation, thereby reducing the amount of calculations.

Direct and elimination methods are commonly studied in a first

year linear algebra course.  The iterative methods generally appear

at the end of most texts.  We will illustrate Jacobi and Gauss-Seidel

methods with the help of the following example:

Solve:

20x   -   x   +  x   =  201 2 3

 2x   + 10x   -  x   =  111 2 3

  x   +   x   -20x   = -181 2 3

We can rewrite these equations as:
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y   =    1

y   =   2
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Jacobi Method :

We take x   = (0, 0, 0) as an initial approximation to the(0)

solution, and use four iterations to get:

x    = (1, 1.1, 0.9)(1)

x    = (0.995, 0.97, 1.005)(2)

x    = (0.99825, 1.0015, 0.99825)(3)

x    = (1.0001625, 1.000175, 0.9999875)(4)

Gauss-Seidel Method :
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Take   x    = (0, 0, 0)(0)

We calculate x  = y   using  x   = 0, x  = 0. Then use this new1 1 2 3

 x along with x  = 0 to compute x  = y .  Finally, in the third1 3 2 2 

 equation, use the new values for x   and x   to compute x  .  Thus,1 2 3

 we get:

x    = (1, 0.9, 0.995)(1)

x    = (0.99525, 1.00045, 0.999785)(2)

x    = (1.00033, 0.9999719, 1.0000002)(3)

This shows that this sequence co nverges faster than the sequence

of Jacobi method.  There are examples where the Jacobi method is

faster than the Gauss-Seidel method.  In general, both methods work

when the coefficient matrix A is strictly diagonally dominant.  See

[2, page 292].

We use sparse matrices and random matrices of different sizes

to compare these methods. We first solve:

Ax = b

with a symmetric, triagonal and sparse matrix A given by:

A(i, i) = 3 for 1  

A(i, i-1) = -1 for 2

          A(i-1, i) = -1 for 2

Note that for n = 32, A has only 94 non-zero entries out of 1024



entries.

Let b be defined by b(i, 1) = 0.02i and the initial solution x

defined by x(i, 1) =0 for 1 i n.

                   Take:

D = diag(diag(A))

P = D - A

L = tril(A)

U = triu(A) - D

Matlab procedure for Jacobi method:

for k = 1 : 10,  y = inv(D)(Px + b),  x = y; pause, end.

Matlab procedure for Gauss-Seidel method:

for k = 1 : 10,  y = inv(L)(-Ux + b), x = y; pause, end.

Number of flops for the matrix

Method A(6,6) A(12,12) A(24,24) A(32,32)  

x=A\b 237 876 4079 15576

x=inv(A)*b 374 1472 6515 50911

x=rref([A b]) 995 4316 22448 67048



Jacobi method 3520 13540 37812 529910

(10 iter) (10iter) (6 iter) (10 iter)

G-S method 2884 8090 15382 317946

(7 iter) (5 iter) (2 iter) (6 iter)

We now use A = random (n) + nI and repeat the above

calculations.

Number of flops

Method A(6,6) A(12,12) A(24,24) A(36,36)

A\b 377 2089 12953 28723

inv(A)*b 654 4335 31125 71940

rref([A b]) 2573 10856 50636 78756

Jacobi method 1760 8124 31812 317946

(5 iter) (6 iter) (6 iter) (6 iter)

G-S method 1636 8979 56409 219888

(3 iter) (3 iter) (3 iter) (3 iter)

Anton's linear algebra text has a chapter on numerical method



of linear algebra where one can find discussion of computational time

for various methods.
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