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Abstract

Have you ever examined the light patterns on the bottom of a cup or bowl

with re°ective sides and wondered what shapes you see? If a light source is placed
somewhat o® center, rather than directly above, you might conjecture that the
pattern resembles a cardioid. The purpose of this paper is to discuss how students
may furnish some answers by using elementary vector algebra and orthogonal
projections with the aid of a computer algebra system (CAS). For instance, if the
cup is a simple right circular cylinder, then it will become readily apparent that
the image is generated by in¯nitely many lima»cons.

We suppose the unit disk x2+y2 · 1 is the bottom of the cup and the sides are
formed by revolving the graph of a function x = f(z) with f(0) = 1 and f 0(z) ¸ 0
about the z-axis. For example, f(z) ´ 1 when the cup is a cylinder. A CAS

such as Mathematica, for example, makes it easy to model the re°ected light rays
formally, without even specifying exactly what f(z) is. By then making particular
choices for f(z), we may use the plotting capabilities a CAS provides to assess the
accuracy of the model by comparing the graphs to what is seen in reality.
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1. Introduction.

One day a colleague of mine, George Kung, asked if I'd ever contemplated the pattern of

re°ections on the bottom of a cup. I confessed I hadn't, though a walk outside into the

sunlight armed with a co®ee mug quickly convinced me that the question was intriguing.

If you try such an experiment with the right type of cup (one with re°ective sides and

bottom works best), you will see a relatively bright image which resembles a cardioid

on the bottom of the cup (see Figure 1).

Figure 1. A Cylindrical Cup.

An experiment which we found especially instructive was to sweep out re°ection curves

by pivoting a laser pointer in such a way so its beam remains ¯xed at constant heights.

The purpose of this paper is to demonstrate howMathematica may be used by most

any third-semester calculus students to investigate and render such images.
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2. Re°ection Curves.

We begin by choosing the unit disk f(x; y; 0):x2 + y2 · 1g as the base of the cup. If

we suppose the sides are formed by revolving the graph of some function x = f(z) with

f(0) = 1 about the z-axis, then the cross-section of the cup at height z is a circle with

radius f(z). For example, f(z) ´ 1 when the cup is a right circular cylinder. Since we

intend to use vectors perpendicular to the sides to compute directions of re°ected light

rays, we will assume f is di®erentiable with f 0 ¸ 0. This nonnegativity assumption

on f 0 prohibits the sides of the cup from narrowing as a function of height, so as to

eliminate any complications due to shadowing e®ects.

If the light source is at in¯nity, then all incoming light rays can be considered parallel

to the xz-plane with the same angle of declination ® as shown in Figure 1. Therefore,

each light ray has the same direction (i.e., unit vector) given by bl := ¡cos ®bi¡ sin® bk.
If we ¯x any height z, then light rays impact the cup on a circle parametrized by

f(z) cos µbi+f(z) sin µbj+z bk for µ 2 [0;2¼). Since for any ¯xed µ the vector f 0(z) cos µbi +
f 0(z) sin µbj + bk is tangent to the cup, we ¯nd, after a little bit of thought, that ~n :=

¡cos µbi¡ sin µbj+ f 0(z) bk is a corresponding normal vector. (This construction is similar

to that found in the plane, where abi + bbj and ¡bbi + abj are orthogonal.) If ~r denotes

a vector parallel to the re°ected ray, then we may use orthogonal projections to obtain

~r = bl¡ 2
³
(bl ¢ ~n)=(~n ¢ ~n)´~n. See the diagram in Figure 2.

Figure 2. Re°ection vectors using orthogonal projections.

For each z and µ, a single ray re°ects along the line ~R(s; µ) := f(z) cos µbi+f(z) sin µbj+
z bk+s~r where s 2 R . We intend to determine the locus of points formed by intersecting

these lines with the xy-plane. Some preliminary Mathematica de¯nitions are

l := {-Cos[a],0,-Sin[a]}
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n := {-Cos[t],-Sin[t],F'[z]}

R[s ,t ] := {F[z]*Cos[t],F[z]*Sin[t],z}+s*(l-2*l.n/n.n*n)

where a represents ® and t represents µ. Simplifying ~R(s; µ) via the Mathematica

command Simplify[R[s,t],Trig->True], one gets

~R(s; µ) =

"
f(z) cos µ + s

Ã
¡cos® +

2 cos µ (cos® cos µ ¡ f 0(z) sin®)

1 + f 0(z)2

!#bi
+

"
f(z) sin µ +

2s sin µ (cos ® cos µ ¡ f 0(z) sin®)

1 + f 0(z)2

#bj
+

"
z + s

Ã
¡sin® ¡

2f 0(z) (cos® cos µ ¡ f 0(z) sin®)

1 + f 0(z)2

!# bk:

In order to ¯nd the curve of re°ection in the xy-plane as a function of µ only, we merely

have to set the z-component to zero and solve for s, and then substitute this value back

into ~R(s; µ) and simplify. These steps are accomplished by using the commands

Solve[Simplify[R[s,t][[3]]==0,Trig->True],s]

and

Simplify[R[%[[1]][[1,2]],t],Trig->True].

The symbol % is used by Mathematica as a synonym for the preceding statement; in this

case it was the Solve statement. Further simpli¯cation, together with a bit of rewriting,

results in re°ection curve parametrizations

~R(µ) :=

24(A+B cos µ) cos µ ¡
z
³
1 + f 0(z)2

´
cos®

2f 0(z) cos® cos µ +
³
1¡ f 0(z)2

´
sin®

35bi
+ [(A+B cos µ) sin µ]bj
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where

A =

³
f(z)

³
1¡ f 0(z)2

´
¡ 2zf 0(z)

´
sin®

2f 0(z) cos® cos µ+
³
1¡ f 0(z)2

´
sin®

and

B =
2 (f(z)f 0(z) + z) cos®

2f 0(z) cos ® cos µ +
³
1¡ f 0(z)2

´
sin®

:

Recall that typical parametric equations for a lima»con are x(µ) = r cos µ and y(µ) =

r sin µ where r = a+b cos µ and a; b are constants. Closely examining ~R(µ), we see that a

re°ection curve is a horizontal translate of a lima»con iff z satis¯es f 0(z) = 0, in which case
~R(µ) = x(µ)bi+y(µ)bj where x(µ) = (A+B cos µ) cos µ¡z cot®, y(µ) = (A+B cos µ) sin µ,

A = f(z), and B = 2z cot®. Furthermore, a re°ection curve is a translated cardioid

precisely when z also satis¯es f(z) = A = B = 2z cot®.

In determining the re°ection curves we have allowed re°ections to take place on

either the outside or inside of the cup, and the re°ected rays are also allowed to pass

through the sides of the cup en route to the xy-plane. Both of these di±culties will

be overcome by restricting our attention only to the bottom of the cup when rendering

¯nal images.

3. Examples.

Example 1 (Cylindrical Cup). If the cup is in the shape of a right circular cylinder, we

have f(z) = 1 for all z ¸ 0. After some experimentation, ® = ¼=6 = 30± was chosen.

Figure 3 below shows the cross-section of the cup as well as the re°ection curves on

the bottom which correspond to heights z = 0; 0:02; : : : ; 1:16. Note that the right-

hand portion of Figure 3 is a negative of the actual Mathematica plot, so that when

this paper is printed white curves and regions on the printout correspond to re°ection

curves and lighted regions on the bottom of the cup. (The upper limit for z corresponds

to 2 tan(¼=6) and represents the maximum allowable height before all re°ected rays fail

to directly impact the bottom of the cup.) While the boundary of the brighter region

super¯cially resembles a cardioid, we have shown that it is really generated by in¯nitely

many lima»cons and one cardioid.
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Figure 3. Cross-section and re°ection curves for a cylindrical cup.

Example 2 (Cereal Bowl). First, we need to ¯nd a function which represents the shape of

a given cereal bowl (see the left-hand part of Figure 4). Since the curved portion of the

cross-section looks like part of an inverted normal probability function e¡z
2

, we chose

f(z) = 1 +
q
¡1

4
ln(1¡ z) for 0 · z < 1 to represent the sides of the cereal bowl. (This

particular f is the inverse of 1 ¡ e
¡4(z¡1)2

. There are certainly other functions besides

e¡z
2

which could be suitably modi¯ed.) Having found a function which approximates

the shape of the bowl, we next need to ¯nd a declination angle ® which results in a

good image on the bottom. Due to the fact that the bowl widens more rapidly than the

cylinder of Example 1, we must use a larger angle to guarantee re°ected rays impact

the bottom. After some trial and error, ® = ¼=2:4 = 75± was chosen. Figure 4 contains

the results.

Figure 4. Cross-section and re°ection curves for a cereal bowl.

It is worth remarking that both the loop and opposing spike are seen in reality.
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