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Abstract

We combine the idea of the direct LU factorization with the idea of
the pivoting strategy in the usual Gaussian elimination and show that t-
wo so-called total scaled and total pivoting strategies can be employed in
addition to the traditional pivoting strategies: partial scaled, partial, and
direct diagonal. In this paper we o�er a general LU factorization with
total scaled pivoting algorithm from which the other well-known pivoting
and non-pivoting algorithms can be driven. We utilize the random number
routines in MSU-Billings' main frame computer to compare these pivoting
strategies and conclude that none of the �ve strategies is absolutely more
accurate than the other but generally their accuracy desending order is the
same as their appearing order in the above.

1. Introduction

Let n and m be positive integers. Let A be an n by n matrix of
real or complex numbers. Let B be an n by m matrix. To solve the
linear system:

AX = B

many pivoting strategies have been developed for A being of some special
type. One who is interested may refer to recent articles, for example, [1]
and [2]. In this paper we shall be concerned with the case when A is of the
general type. It is well known that by using Gaussian elimination with one
of the following pivoting strategies: partial, partial scaled, and total one
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can solve the system by the backward substitution. It is also well known
that if A can be LU factorized, one can solve the system with the forward
substitution corresponding to the matrix L followed by the backward
substitution corresponding to the matrix U: Recall that A can be
directly LU factorized whenever the Gaussian elimination can be employed
without any pivoting strategy, i.e., without row or column interchanges.
Thus in order to solve the system one may use di�erent strategies to �nd
the LU factorization factors of A and at the same time permute the rows
of the matrix X or the rows of the matrix B according to whether a
pair of columns or rows of A are interchanged. After the LU factorization
of A are found, the forward substitution and the backward substitutions
can be applied and �nally the rows of X are permuted back to its original
order. In this paper we use these principles to combine the direct LU
factorization with various pivoting strategies. In Section 2 we give some
mathematical facts. The four pivoting strategies: partial, partial scaled,
total, and total scaled are discussed in Section 3. Althought the direct
Gaussian elimination method is omited in our discussion because it is strait
forward, we compare it with the other in program. A general algorithm is
given in Section 4. Then the other well-known pivoting and non-pivoting
algorithms are driven from the general algorithm. In the last section we give
a report on the accuracy among these stategies. The result is surprising that
in 100000 random cases, even the simplest direct diagonal strategy is more
accurate than the other in 8457 cases. These shows that none of the �ve
strategies is absolutely more accurate than the other. We may conclude
that generally speaking, the accuracy of the �ve pivoting strategies from
the total scaled pivoting strategy to the direct diagonal pivoting strategy is
descending.

2. Mathematical Discussion

(2.1) Notation. Let I
(i;j)
n and In(i;j) be the matrix induced from the

n by n identity matrix by interchanging the ith and the j th rows and
columns respectively.

(2.2) Notation. Let P be an n by m matrix. Let P (i;j) denote the
matrix induced by interchanging the ith row and the j th row of P . Let
P(s;t) denote the matrix induced by interchanging the sth column and the
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tth column of P. Thus P
(s;t)

(i;j)
denotes the matrix induced by interchanging

the ith and the j th row followed by interchanging the sth and the tth
column or vice versa.

(2.3) Lemma. Let P be an n by m matrix. Then we have

P (i;j) = I(i;j)n P

and
P(s;t) = PIm(s;t);

where, 1 � i; j � n and 1 � s; t � m:

Proof. It is trivial from the de�nition of the matrix multiplication.

(2.4) Corollary. Let P be an n by m matrix. Then we have

P
(i;j)

(s;t)
= I(i;j)n PIm(s;t);

where, 1 � i; j � n and 1 � s; t � m:

Proof. This an immediate consequence of the above lemma.

(2.5) Discussion, De�nition and Notation. Let

fFi(�; �) = 0g
n

i=1

be a set of constraints. Let A be an n by n matrix. We say that
A can be LU factorized up to the ith stage with respect to the constraints
fFi(�; �) = 0g

n

i=1 if the following system of conditions:

Fj(ljj; ujj) = 0; (A)

where 1 � j � i , has a solution such that

ljjujj 6= 0; (B)

for 1 � j � i; and

ljr = 0; (C)
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where 1 � j � i; j < r � n; and

urt = 0; (D)

where 1 � t � i; t < r � n; and

minfj;tgX

r=1

ljrurt = ajt; (E)

where j and t are not simultaneously greater than i: Let L be a
matrix with these solved entries ljr; and U be a matrix with these solved
entries urt: Then LU and A have the same entries except the right
lower (n � i) by (n� i) entries. We write A = LU=i=:

In the rest of the paper, every matrix will be n by n and I will be
the intentity matrix.

(2.6) Theorem. Let fFi(�; �) = 0g
n

i=1 be as in (2.5). Assume that
A can be LU factorized up to the ith stage with respect to the given con-

straints such that A = LU=i=: Let i < k; h; v; w � n: Then A
(k;v)

(h;w)
which

is the matrix induced from A by interchanging the k th and hth rows also
the v th and the w th columns can be LU factorized up to the ith stage.

Moreover we have A
(k;v)

(h;w)
= L(k;v)U(h;w)=i=:

Proof. From Corollary (2.4) and Lemma (2.3) we have

A
(k;v)

(h;w)
= I(k;v)AI(h;w)

and
I(k;v)LUI(h;w) = L(k;v)U(h;w):

Since L(k;v) is induced from L by interchanging the k th and the v th
rows and U(h;w) is induced from U by interchanging the hth and the
w th columns and every index is greater than i conditions (A) - (E) of
(2.5) are preserved. Therefore we obtain

A
(k;v)

(h;w)
= L(k;v)U(h;w)=i=;
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i.e., A
(k;v)

(h;w)
can be LU factorized up to the ith stage.

(2.7) Theorem. Let F; A; L , U be as in (2.5). Assume that A can
be factorized up to the (i � 1)th stage so that A = LU=i � 1=: Assume
further that

(I) ci = aii �
Pi�1

r=1 liruri 6= 0

and that the simultaneous equations

(II) Fi(�; �) = 0 and �� = ci
have a solution (�ii; �ii):

Then A can be LU factorized up to the ith stage:

A = L0U 0=i=;

where

(i) L0 and L have the same entries in their �rst i�1 columns and rows;
So are U 0 and U ;

(ii) l0ii = �ii; u0ii = �ii;

(iii) l0ir = 0; u0ri = 0; for i < r � n;

(iv) l0ji =
aji�
P

i�1

r=1
ljruri

u0
ii

=
aji�
P

i�1

r=1
l0jru

0

ri

u0
ii

for i < j � n;

(v) u0ij =
aij�
P

r=1
i�1lirurj

l0
ii

=
aij�
P

r=1
i�1l0iru

0

rj

l0
ii

for i < j � n:

Proof. Condition (I) and condition (II) implies that �ii 6= 0 and �ii 6=
0 so that l0ii 6= 0 and u0ii 6= 0: Hence condition (A) and condition (B)
in (2.5) are satis�ed and the constructions of these entries in (iv) and (v)
are meaningful. Therfore condition (iv) and condition (v) guarantees that
condition (E) in (2.5) is satis�ed also. Condition (C) and condition (D) of
(2.5) are satis�ed because of (iii).

3. Pivoting Strategies

To do LU factorization of A we �rst set i = 1 and A(i�1) = A . Assume
that A(i�1) is can be factorized up to (i � 1)th stage. Use a certain

pivoting stratege to select a pivoting element a
(i�1)
vw in A(i�1): Now

apply Theorem (2.6) we next swap a
(i�1)

ii with a
(i�1)
vw by interchanging

corresponding rows and columns. Then apply Theorem (2.7) to factorize
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the induced matrix A(i) so that A(i) can be factorized up to ith stage.
Thus we have various choices for the LU factorization factors L(i) and
U (i) of A(i) because of various di�erent pivoting elements. The �rst three
pivoting strategies in the following make use of the idea in the traditional
Gaussian elimination.

(3.1) Partial Pivoting. When A(i); 1 � i � n; is induced from

A(i�1) by selecting an entry a
(i�1)

jk such that

(I) i � j � n; k = i ;

(II) ja
(i�1)

jk j = maxnr=ija
(i�1)

rk j ,

the pivoting strategy is called partial.

(3.2) Partial Scaled Pivoting. When the condition (I) in (3.1) is reserved
and the condition (II) is replaced by

(II') ja
(i�1)

jk j = maxnr=i
ja
(i�1)

rk
j

maxn
s=1ja

(i�1)
rs j

,

the pivoting strategy is called partial scaled.

(3.3) Total Pivoting. When the condition (I) and (II) in (3.1) are replaced
by

(I") i � j; k � n;

(II") ja
(i�1)

jk j = maxnr;s=ija
(i�1)
rs j ,

the pivoting strategy is called total.

(3.4) Total Scaled Pivoting. When the condition (I") in (3.3) is reserved
and (II") is replace by

(II"') ja
(i�1)

jk j = maxnr;s=i
ja(i�1)rs j

maxn
s=1

ja
(i�1)
rs j

,

the pivoting strategy is called total scaled.

4. General Algorithm

In the �rst subsection we give a general algorithm. Then simplyfy it to
special cases in subsection (4.2) to (4.4). Moreover in subsection (4.5) some
well-known non-pivoting strategies are considered as very special cases of
the general algorithm. Based on the discussions in Section 2 and 3, for
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a given set of constraints fFi(�; �) = 0g
n

i=1; in order to solve the linear
system AX = B the matrix A is induced from A(0) = A to A(n) so that
L(i) and U (i); 1 � i � n; are obtained correspondingly. At the same time
the rows of B or the rows of X are interchanged accordingly. In practice
we do not actually interchange them each time. Instead we use two index
arrays to keep their updated order. This technique will save computer's
interchanging time. Then make use of these two arrays to interchange the
rows of X and B respectively. Let Y and C denote their �nal
interchanged forms so that we have A(n)Y = C , i.e., L(n)U (n)Y = C .
Let Z be the solution of L(n)Z = C . Then Y is the solutuion of
U (n)Y = Z . Finally make use the index array for the row order of X to
restore Y back to X . In the following we will use L and U to represent
these L(i) and U (i); 1 � i � n . The two index arrays mentioned in the
above are denoted by XI and BI: The absolute maximum of each row
in X will be stored in the array MAX:

(4.1) General LU Factorization With Total Scaled Pivoting Algo-

rithm. To solve the linear system AX = B :

(1) Declare A; L; and U as two dimensional n by n arrays of complex
numbers;

(2) Declare X; Y; Z; B; and C as two dimensional n by m arrays
of complex numbers;

(3) Declare XI and BI; as one dimensional arrays (with length n) of
integers;

(4) Declare MAX as an one dimensional array (with length n) of real
numbers;

(5) Input the entries of A and B ;

(6) Initialize XI and BI so that XIi = BIi = i; 1 � i � n;

(7) For i from 1 to n �nd the absolute maximum for the ith row of
X; i.e., MAXi = maxnj=1jaijj;

(8) If MAXi = 0 then output no unique solution message and stop

(9) For i from 1 to n �nd a pivoting element ajk so that i � j; k �

n; and
jajkj

MAXj
= maxnr;s=i

jarsj

MAXr

(10) If i < j then (a) interchange the ith and j th rows of A only
for those entries from the ith column to the nth column ; (b) interchange
BIi and BIj ; (c) interchange the ith and j th rows of L only for
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those entries from the �rst column to the (i�1)th column; (d) interchange
MAXi and MAXj ;

(11) If i < k then (a) interchange the ith and k th columns of A only
for those entries from the ith row to the nth row; (b) interchange XIi and
XIk ; (c) interchange the ith and k th columns of U only for those entries
from the �rst row to the (i� 1)th row;

(12) If aii �
Pi�1

r=1 liruri = 0; then output no unique solution message
and stop;

(13) Find a solution (lii; uii) to the simultaneous equations Fi(�; �) = 0

and �� = aii �
Pi�1

r=1 liruri;

(14) If i < n; then for j from i+ 1 to n

(15) Find the j th entry of the ith column of L as follows:

lji =
aji�
P

i�1

r=1
ljruri

uii

(16) Find the j th entry of the ith row of U as follows: uij =
aij�
P

i�1

r=1
lirurj

lii
;

(17) Transform B to its �nal form C : cij = bBIij , 1 � i; j � n ;

(18) Use forward substitution to solve the linear system LZ = C : For

j from 1 to n do for i from 1 to n do set zij =
cij�
P

i�1

r=1
lirzri

lii
;

(19) Use backward substitution to solve the linear system UY = Z :
For t from 1 to n do for s from n downto 1 do set yst =
zst�
P

n

r=s+1
usryrt

uss
;

(20) Restore X back to its original order from Y : For i from 1 to
n do for j from 1 to n do set xXIij = yij ;

(21) Output X ;

(22) Stop.

(Note that when i = 1 the sum in (12), (15), (16), (18) is de�ned as 0
and so is the sum in (19) when s = n .)

(4.2) Total Pivoting Algorithm. One can obtain this from (4.1) by
deleting (4.1.4), (4.1.7), (4.1.8), and (4.1.10.c); in (4.1.9) deleting MAX

and adding the statement "If ajk = 0 , then output no unique solution
and stop".
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(4.3) Partial Scaled Pivoting Algorithm. This can be achieved from
(4.1) by deleting Y in (4.1.2) XI in (4.1.3) and (4.1.6); k and s being
�xed as i in (4.1.9); replacing Y by X in (4.1.19); deleting (4.1.11)
and (4.1.20).

(4.4) Partial Pivoting Algorithm. This can be obtained by deleting
Y in (4.1.2); deleting XI in (4.1.3) and (4.1.6); deleting (4.1.4), (4.1.10.d),
(4.1.11), and (4.1.20); in (4.1.9) �xing k and s as i , deleting MAX ,
and adding the statement "If ajk = 0 , then output no unique solution
and stop"; replacing Y by X in (4.1.19).

(4.5) Some Special Cases of Non-Pivoting Strategy. If no pivot-
ing strategies are employed in (4.1), i.e., (4.1.3) - (4.1.4), (4.1.6) - (4.1.11),
(4.1.17), (4.1.20) are deleted and replace C by B in (4.1.18) Y by
X in (4.1.19) and delete Y in (4.1.2), the no-pivoting algorithm is called
Doolittle's method when fFi(�; �) = � � 1g

n

i=1 ; Crout's method when
fFi(�; �) = � � 1g

n

i=1 ; Choleski's method when fFi(�; �) = � � �g
n

i=1 .

5. Implementation and Accuracy Comparison

(5.1) An implementation. A Pascal (a program, a sample run of the pro-
gram, and 4 modules which actually provide more other features) implemen-
tation of the above algorithms has been run in the main frame VAX 8650
with VAX/VMX version 5.5 of Montana State University - Billings. There
we declare all the matrices to have open dimension length. We also employ
the random routines in the system to compare the accuracy of the above
pivoting strategies. Note the program is in the �le chen ictcm8 pgm.pas
and its sample run result is in the �le chen ictcm8 pgm.out. The four mod-
ules are in chen ictcm8 luf.pas, chen ictcm8 lup.pas, chen ictcm8 sar.pas,
and chen ictcm8 sub.pas respectively.

(5.2) Accuracy Comparison. We �nd out that, usually, the accuracy
desending order of these pivoting strategies is the same order as their ap-
pearing order in the Section 4: For exmple, in a program run to solve a set
of randomly selected linear systems of 5 variables we obtain the following
reults:
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(I) In 10 random cases:

There are 4 cases in which the total scaled strategy is the most accurate;

There are 4 cases in which the total strategy is the most accurate;

There are 2 case in which the partial scaled strategy is the most accurate;

There are 3 cases in which the partial strategy is the most accurate;

There are 0 cases in which without pivoting strategy is the most accurate.

(II) In 100 random cases:

There are 44 cases in which the total scaled strategy is the most accurate;

There are 29 cases in which the total strategy is the most accurate;

There are 26 case in which the partial scaled strategy is the most accurate;

There are 26 cases in which the partial strategy is the most accurate;

There are 0 cases in which without pivoting strategy is the most accurate.

(III) In 1000 random cases:

There are 365 cases in which the total scaled strategy is the most accurate;

There are 330 cases in which the total strategy is the most accurate;

There are 265 case in which the partial scaled strategy is the most accurate;

There are 261 cases in which the partial strategy is the most accurate;

There are 0 cases in which without pivoting strategy is the most accurate.

(IV) In 10000 random cases:

There are 3395 cases in which the total scaled strategy is the most accurate;

There are 3211 cases in which the total strategy is the most accurate;

There are 2655 case in which the partial scaled strategy is the most accurate;

There are 2560 cases in which the partial strategy is the most accurate;

There are 144 cases in which without pivoting strategy is the most accurate.

(V) In 100000 random cases:

There are 30132 cases in which the total scaled strategy is the most accurate;
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There are 29828 cases in which the total strategy is the most accurate;

There are 26103 case in which the partial scaled strategy is the most accu-
rate;

There are 25028 cases in which the partial strategy is the most accurate;

There are 8457 cases in which without pivoting strategy is the most accu-
rate.

(Note that in some special cases two or more di�erent pivoting strategies
may yield the same degree of errors, i.e., they are of the same degree accu-
rate therefore they could be the most accurate. This is the reason why the
total sum of each individual subcases is not exactly the same as the total
cases (usually more than).)

(5,3) Conclusion. From the above result, we may conclude that: (1)
Strictly speaking, none of the �ve strategies is absolutely more accurate
than the other four strategies. (2) Generally speaking, the accuracy for
the �ve strategies from the total scaled strategy to the direct strategy is in
descending order.
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