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In this paper, we will demonstrate how nonadaptive integration quadratures such as Simp-
son's Rule, and Trapezoidal's Rule with equally spaced divisions can be easily modi¯ed
into adapative quadratures with non-equally spaced divisions by using \matrices or ar-
rays". The necessicity of adaptive quadratures depends upon the behavior of a function.
These quadratures can be used in treating functions which are monotone, or highly oscil-
lating with singularities (see [2]). All these quadratures could not have been experimented
without the presence of computer algebra system such as Maple. We assume readers are
familiar with basic Maple commands. The following example will show why the adapted
quadratures are necessary and how we use matrices to device such quadratures:

Example: Let f(x) = 1=
p
x for x2(0;1], and f(0) = 0. We use Maple to demonstrate

how we estimate the integral of f over the interval [0,1].

> f := proc(x) 1=sqrt(x)end;

f := proc(x) 1/sqrt(x) end

> f(x);

1p
x

Now we de¯ne the matrix \ank" which is used to determine the widths of each subinterval
we choose.

> ank:=proc(a,b,n,k) 2*(b-a)*k/(n*(n+1)) end;

ank := proc(a,b,n,k) 2*(b-a)*k/n/(n+1) end

> ank(a; b; n; k);
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Notice that the sum of \ank" from k = 1 to n is b¡ a, this is because the matrix ank is
formed by using the formula of

P
n

k=1 k = n(n+1)
2

.

> simplify(sum(ank(a; b; n; k); k = 1::n));

b¡ a

Now let's print out the matrix formed by \ank", which will tell us how we divide our
interval.

> with(linalg) :

>A:=matrix(9,9, proc(i,j) if j > i then 0 else ank(0,1,i,j) ¯ end);

A :=
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Remark: (i) Notice that the 9 by 9 matrix A represents a partial list as to how we
choose the length of each subinterval. For example if we divide the interval [0,1] into 9
subintervals, then the lengths of each subinterval are 1/45, 2/45, and so forth. Also note
that the sum of each row is 1 and the (n; k)-entry a(n; k) tends to 0 as n tends to in¯nity
regardless of k, see [2, De¯nition 2].
(ii) We remark that the function f is steeper when x is close to 0, that is why we choose
the sequence ank decreases to 0 or the entries of each row, n, of the matrix A satisfying
a(n; i) < a(n; j) if i < j. This suggests that when one considers the division of the
de¯nition of an integral, he or she should take the local behavior of the function into
consideration. That is why we have generalized Riemann integral and Henstock integral,
see [1], [3], or [4].
(iii) We can continue dividing the interval [0,1] into any n- subintervals by using the
formula of ank. Now we shall describe our ¯rst quadrature. Intuitively, we are using
trapezoidal's rule with the matrix determined by \ank". That is why we call it an
adaptive trapezoidal rule.



First we de¯ne the right and left end evaluating points:

> right := proc(a; b; j; k; n) a+sum(ank(a,b,n,j), j=1..k) end;

right := proc(a,b,j,k,n) a+sum(ank(a,b,n,j),j = 1 .. k) end

> right(a; b; j; k; n);
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> left:=proc(a,b,j,k,n) a+sum(ank(a,b,n,j), j=0..k-1) end;

left := proc(a,b,j,k,n) a+sum(ank(a,b,n,j),j = 0 .. k-1) end

>left(a,b,j,k,n);
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Now we de¯ne our ¯rst quadrature, an adaptive trapezoidal's rule:

> adtrap:=proc(a,b,n) sum(ank(a; b; n; k)¤(f(lef t(a; b; j; k; n))+f(right(a; b; j; k; n)))
/2, k=2..n)
> end;

adtrap :=

proc(a,b,n) sum(1/2* ank(a,b,n,k)*(f(left(a,b,j,k,n))+f(right(a,b,j,k,n))) ,k = 2 .. n)
end

Note that since the singularity of the function f is at x = 0, our quadrature \adtrap"
described above starts evaluating at the second point, in other words, we avoid the sin-
gularity. Let's experiment our quadrature as follows with di®erent number of divisions.

> evalf(adtrap(0,1,500));evalf(adtrap(0,1,600));evalf(adtrap(0,1,630));

1:995080118

1:995899693

1:996094852

In view of the data obtained above, we conjecture that the integral is convergent; of course
we know that the improper integral of this function exists and is equal to 2. The next



experiment we would like to see is what if we change our matrix ank, will we achieve
better or worse convergence, and why? Let us use the formula
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n
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2 = n(n+1)(2n+1)

6
to

form the matrix bnk as follows:

> bnk:=proc(a,b,n,k) (6*(b-a)*(k**2)/(n*(n+1)*(2*n+1))) end;

bnk := proc(a,b,n,k) 6*(b-a)*(k**2)/n/(n+1)/(2*n+1) end

Follow the procedure we de¯ned the quadrature \adtrap", we de¯ne the second quadrature
\Adtrap" by using the matrix \bnk".

> Right:=proc(a,b,j,k,n) a+sum(bnk(a,b,n,j), j=1..k) end;

Right := proc(a,b,j,k,n) a+sum(bnk(a,b,n,j),j = 1 .. k) end

> Left:=proc(a,b,j,k,n) a+sum(bnk(a,b,n,j), j=0..k-1) end;

Left := proc(a,b,j,k,n) a+sum(bnk(a,b,n,j),j = 0 .. k-1) end

> Adtrap:=proc(a,b,n) sum(bnk(a,b,n,k)*(f(Left(a,b,j,k,n))+f(Right(a,b,j,k,n)))/2, k=
2..n) end;

Adtrap :=
proc(a,b,n) sum(1/2* bnk(a,b,n,k)*(f(Left(a,b,j,k,n))+f(Right(a,b,j,k,n))) ,k = 2 .. n)
end

> evalf(Adtrap(0,1,80));evalf(Adtrap(0,1,90));evalf(Adtrap(0,1,100));

1:998705775

1:998939100

1:999111418

Clearly, by comparing the quadratures \adtrap" and \Adtrap", we see that the second
quadrature incorporating the matrix \bnk" gives a better convergence and will use less
number of points in evaluations. Why? This is because the choice of the matrix bnk is
\compatible" with the behavior of the function f . Next we shall describe an adaptive
Simpson's rule by using the matrix \bnk". First we need to de¯ne the midpoint of each
subinterval.

> Mid:= proc(a,b,j,k,n) (Right(a,b,j,k,n)+Left(a,b,j,k,n))/2 end;

Mid := proc(a,b,j,k,n) 1/2*Right(a,b,j,k,n)+1/2*Left(a,b,j,k,n) end

Here is the adaptive Simpson's rule with the matrix \bnk".



> Adsim:=proc(a,b,n) sum((bnk(a,b,n,k)/6)*(f(Left(a,b,j,k,n))+4*f(Mid(a,b,j,k,n))+f
(Right(a,b,j,k,n))), k=2..n) end;

Adsim := proc(a,b,n) sum(1/6*bnk(a,b,n,k)*(f(Left(a,b,j,k,n))+4* f(Mid(a,b,j,k,n))+
f(Right(a,b,j,k,n))),k = 2 .. n) end

Let's compare Adsim with Adtrap as follows:

> evalf(Adsim(0,1,80));evalf(Adsim(0,1,90));evalf(Adsim(0,1,100));

1:995311595

1:996066815

1:996639020

We observe that the quadrature \Adtrap" is better than that of \Adsim". Notice that
for each ¯xed interval the errors for \Adtrap" and \Adsim" are
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respectively. Apparently, the behavior of f makes the quadrature \Adtrap" a better
choice. Finally, we would like to modify the adaptive Trapezoidal's rule \Adtrap" to
achieve a better result. We remark that the quadrature \Adtrap" ignores the tail com-
pletely since we wanted to avoid the singularity at x = 0. Now we want to add this tail,
an1f(x0); where x0 = the ¯rst right end point, and we predict we will obtain something
better.

> best:=proc(a,b,n) bnk(a,b,n,1)*f(Right(a,b,j,1,n))+sum(bnk(a,b,n,k)*(f(Left(a,b,j,k,
n))+f(Right(a,b,j,k,n)))/2, k=2..n) end;

best :=
proc(a,b,n) bnk(a,b,n,1)*f(Right(a,b,j,1,n))+sum(1/2* bnk(a,b,n,k)*(f(Left(a,b,j,k,n))
+f(Right(a,b,j,k,n))),k = 2 .. n) end

> evalf(best(0,1,80));evalf(best(0,1,90));evalf(best(0,1,100));

2:001103919

2:000950944

2:000830584



Remarks: (1) The quadratures decribed in this paper could be lifted to two dimensions,
see [2].
(2) Given a function, how to pick the best matrix for this function needs further investi-
gations.
(3) Sometimes, Maple will not perform calculations for our quadratures if the number of
divisions gets large. However, we could always write a program to run our quadratures
such as using Turbo Pascal, Fortran, or etc. Computer algebra systems help us make
conjectures which could not have been accomplished otherwise.

Conclusions: Computer algebra systems have been used in teaching calculus, linear al-
gebra, di®erential equations, and other courses. Text books incorporated with CAS are
popular items too. How to use CAS in making mathematical conjectures and forming new
theorems beyond the ¯rst and second year's of undergraduate courses is an important issue
as indicated in [5].
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