
Should We be Concerned about Roundo® Error?

Dr. Anthony P. Leclerc
Department of Computer Science

The College of Charleston
66 George Street

Charleston, SC 29424
leclerc@cs.cofc.edu

1 An Example of Roundo® Error

Some might contend that, today, roundo® error is not a critical issue because of the ex-
tended precision °oating point numbers available on many computers. However, consider
an example of S. M. Rump [3] where the following innocuous-looking function

f(x; y) = 333:75y6 + x2(11x2y2 ¡ y6 ¡ 121y4 ¡ 2) + 5:5y8 + x=(2y) (1)

was evaluated at x = 77617 and y = 33096.

The FORTRAN program to evaluate this function at various precisions was compiled and
executed on a SPARCstation SLC. The accuracy of the three precisions tested, single,
double, and extended, were 6, 14, and 35 decimal digits, respectively. The powers on
x and y were evaluated with multiplications rather than with the built-in library power
function in order to test only the basic arithmetic operations. The following results were
obtained:

(single precision) f = 6:33825£ 1029

(double precision) f = 1:1726039400532

(extended precision) f = 1:1726039400531786318588349045201838

By observing these results, one might conclude that single precision result is wrong. One
might further (and erroneously) conclude that the double precision result is accurate
since it agrees to 13 digits with the extended precision result. Surprising to many, all
three results are wrong even in the ¯rst digit! For that matter, the sign itself is incorrect!

The exact result, obtained using the variable precision interval arithmetic of VPI [1] with
about 40 decimal digits of accuracy, is \trapped" tightly in the following interval:

[¡0:827396059946821368141165095479816292005;
¡0:827396059946821368141165095479816291986]

The point to be made here is two-fold:

1. Roundo® error can seriously compromise the reliability of results for any ¯xed
precision °oating point computation.

2. By simply observing °oating point results at increasing precisions (single, double,
and extended), no indication of the seriousness of roundo® error may be given.

2 How Can Roundo® Error be Controlled?

It seems that roundo® error plagues all computations performed with ¯xed precision
°oating point arithmetic. How can one hope to alleviate this error?

One tedious e®ort is to perform °oating point error analysis. However, such analyses are
extremely cumbersome and usually only applied to simple functions. In addition, °oating
point error analysis becomes more di±cult with iterative algorithms in which roundo®
error can be propagated from one iteration to the next.

Another attempt is to \estimate" the accuracy of results from a °oating point com-
putation by using stochastic approaches such as the CESTAC method (or Permutation-
Perturbation method) [4]. Such methods, however, are probabilistic in nature and cannot
reliably guarantee the accuracy of the results.

To date, the author knows of only one technique which easily and reliably controls round-
o® error. This technique is interval arithmetic.

3 Interval Arithmetic: A Tool to \Trap" Roundo®

Just one evaluation of a function using interval arithmetic provides upper and lower
bounds on the range of values of the function over a set of values (a continuum) of the
arguments.

3.1 What is Interval Arithmetic?

An interval is a closed bounded set of real numbers

[a; b] = fx : a · x · bg:

Arithmetic with intervals is simply arithmetic with inequalities. For instance, if a · x · b
and c · y · d, then a+ c · x+ y · b+ d. Thus, the addition of two intervals is de¯ned
by:

[a; b] + [c; d] = [a+ c; b + d]

Likewise, using the properties of inequalities, the four basic interval operations are de¯ned
as follows:

[a; b] + [c; d] = [a + c; b+ d]

[a; b]¡ [c; d] = [a ¡ d; b¡ c]

[a; b]£ [c; d] = [min(ac; ad; bc; bd);max(ac; ad; bc; bd)]

[a; b]¥ [c; d] = [a; b]£ [1=d;1=c] if 0 62 [c; d]

The implementation of interval arithmetic on a computer is easy. Since the endpoints a
and b of a given interval [a; b] may not be machine representable numbers, a is rounded
to the largest machine number, say am, which is less than or equal to a, and b is rounded
to the smallest machine number, say bm, which is greater than or equal to b.

This outward-rounded machine interval, [am; bm], contains [a; b]. Simply put, [a; b] µ
[am; bm]. The basic principle of interval arithmetic is preserved in that the exact re-
sult is contained in the corresponding known machine interval, with roundo® error

controlled.

3.2 An Example of Interval Arithmetic

Consider the following interval computation of:

x(u; t) =
u2t

u2 + t2 + 1

where u = [:1; :3] and t = [:2; :6]. Evaluating each sub-expression, one obtains:

u2 = [:01; :09]

t2 = [:04; :36]

u2t = [:002; :054]

u2 + t2 + 1 = [1:05; 1:45]

u2t

u2 + t2 + 1
=

[:002; :054]

[1:05; 1:45]
=

·
:002

1:45
;
:054

1:05

¸
µ [:00137; :05143]

3.3 Where is Interval Arithmetic Available?

There are several extensions or libraries in the FORTRAN, Pascal, and the C++ pro-
gramming languages with facilities for ¯xed or arbitrary precision interval arithmetic [1,
2]. In addition, Maple V version 2 and Mathematica version 2.2 provide for \range" and
\Interval" arithmetic, respectively. However, the \range" arithmetic in Maple V ver-
sion 2 (using evalr()) does not seem to do outward rounding (or outward-rounded I/O)
properly. For this reason, Maple was not able to provide guaranteed \traps" for several
interval computations tested.

4 Should We Teach Students about Roundo®?

In my opinion, yes. The concepts of a ¯xed precision °oating point number, the oper-
ations de¯ned on such numbers, and the strengths (e±ciency) and weaknesses (limited
precision, roundo®) of computing with these types of numbers are not di±cult. A stu-
dent, scientist, mathematician, or engineer, understanding roundo® error and equipped
with the tools to \trap" roundo®, will be able to detect when roundo® has corrupted a
result and hopefully ¯nd better ways to formulate or evaluate the computation.

References

[1] J. S. Ely. Prospects for Using Variable Precision Interval Software in C++ for Solving
Some Contemporary Scienti¯c Problems. PhD thesis, The Ohio State University,
1990.

[2] A. P. Leclerc. E±cient and Reliable Global Optimization. PhD thesis, The Ohio State
University, 1992.

[3] S. M. Rump. Reliability in Computing. The Role of Interval Methods in Scienti¯c
Computing. Academic Press, 1988. roundo® error example.

[4] Jean VIGNES. New Methods in Optimization and their Industrial Uses, pages 219{
227. BirkhÄauser Verlag, Basel, 1989. Estimation of the accuracy of results.

