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Background:
Three years ago, I joined the growing number of mathematics professors

supporting reform in the teaching of calculus.  I switched from the Anton
text to the Ostebee-Zorn St. Olaf text being developed and have used these
materials ever since.  My choice of technological support was the TI-85
graphing c alculator.  At the time I made the decision to go with the 85, I
actually would have preferred using MAPLE; however, Radford University, being
a state supported school, had no money to purchase the computers and site
license n eeded for that option.  In hindsight, I believe that the 85 is
actually the best choice I could have made, most n otably because of its power
and portability.  I subse quently managed to secure some grant monies for our
department to purchase 52 TI-85 's and worked out a deal with our bookstore to
rent these u nits and some the bookstore had purchased to our students on a
semester by semester basis.  Several of our students use the rental units;
but the majority recognize their importance and purchase their own units
before the end of the fall semester.  I have found the instrument extremely
beneficial both in the cl assroom and for assignments and tests.  The machine
has changed the way I give tests.  I now almost always include a take home
portion of the test valued at somewhere from 15 to 30 percent of the test.
My students are encouraged to use the graphing calculator on both parts of
the test.  And because they all have access to a g raphing calculator, many of
the examples and problems I use are much more "interesting" than I used to
give.

In this paper, I will show some strategies for using the TI-85  for teaching
the idea of approximating functions with Taylor polynomials(including error
bounds).

The Theorem:
The Taylor polynomial of degree n centered at x = 0 for function f is given

by  where  and is

the k  derivative of f evaluated at x = 0.th

Motivation:
We would motivate the the orem with an example.  One which works well is f(x)
= e .  Draw the graph of f and construct the tangent line at x = 0.  Myx

students already know this line as the linear approximation  of the function
f.  We then would state(as we have many times before with this construction)
that the function and tangent line are identical at x = 0 and close to each
other "near by" .   The graph, as it appears on the TI-85 , is given below.



e  and the linear approxx

e  and the quadratic approxx

e -q(x) �.01x

After discussing how a straight line cannot
approximate a curve very well, I wo uld lead
them to the conclusion that a curve with
not only the same tangent but also the same
concavity near x = 0 would probably give a
better approximation.  We would then
construct q(x) = a  + a x + a x , the0 1 2

2

quadratic approximation  of e , where wex

want:     q(0) = f(0), q 11(0) = f 11(0), and
q22(0) = f 22(0).  But e  and all of itsx

deri vatives at x = 0 are 1.  So we have
that q(0) = 1, q 11(0) = 1, and q 22(0) = 1.
Furth ermore, since q(x) = a  + a x + a x ,0 1 2

2

q11(x) = a  + 2a x and q 22(x) = 2a .  Thus by1 2 2

substitut ion, q(0) = a , q 11(0) = a  and q 22(0) = 2a ; this last equation says0 1 2

that a  = ½q 22(0).  Thus: a  = 1, a  = 1, and a  = ½.  Therefore 2 0 1 2

the quadratic approximation is the polynomial:    q(x) = 1 + x + ½x .  2

We would then sketch f(x) and q(x) on the
same graph:

Since my stu dents would have already dealt
with both the linear and quadratic
approximations of a function, these should
present no problem.  In addition, they have
dealt with e rror bounds with such objects.
We would then use the TI-85  to find ( albeit
approximately) the interval on which the
two functions are within, say, .01 of each
other.  One must look closely at the graph
to see the horizontal line segment at
height 1 near the vertical axis; this line
segment is over the interval in question.

The keystrokes for this comparison: Under
the assumption that f(x) is in equation y1
and q(x) is in equation y3, go to a new
equation line and enter

abs(y1-y3) ��.01 

(you will find abs [the absolute value
function] at the top of CATALOG and �� is
under the TEST menu; its action is to graph at height 0 when the condition
being tested is false and at height 1 when the condition is true.  Note that
the DrawDot format is bet ter than DrawLine for this comparison since DrawDot
will avoid a "vertical" connection between the x-a xis and the line segment at
height 1.  You can then use TRACE on this new equation to approximate the
endpoints of the interval where the relation is true.)

With the current range se ttings, TRACE reveals that the functions are within
.01 of each other on the (approximate)  interval (-.369,.345).

Taylor Polynomials:
At this point the students should be ready to generalize the idea that the
more derivatives of the p oly that are equal to the corresponding derivatives
of f(x), the better the approximation should be.  It is now time to do Taylor
in earnest, both algebraically and graphically.



e  with p  and px
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e -p (x) �.01x
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e  with p -px
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Viewing Window

Examples:
We would continue the e  example and buildx

several Taylor polys, say through p .  Here8

is a sketch of e  with p  and p : x
5 8

And don't forget to check how the interval
on which the function and the Taylor poly
are within .01 of each other has grown.
Here is the comparison of e  and p (x):x

8

These functions are within .01 of each
other on (-2.504,2.353) now.

It is also very instructive to show f(x)
with the various Taylor polys overlaid
simultaneously.  Here is e  together withx

all the Taylor polynomials p (x) through1
p (x):8

The window one uses for a demonstration of
this type is obviously up to the in dividual
instr uctor.  I have included the range
settings that I used for this example.



cos x with p -p 1 12

cos x with p (x) 10

cos x with p (x) 6

cos x with p (x) 2

cos x with p (x) 12

cos x with p (x) 4

cos x with p (x) 1

cos x with p (x) 8

Assignment:
I would now ask my students to compute say the Tay lor polynomials through say
degree 12 for f(x) = 2cos x at x = 0 and to sketch the graphs.  (The
multiplier 2 is not necessary, but it gives a bit more definition to the
curves without the student having to think about showing it.)  [Actually,
this is my favorite example; but since the odd pow ered Taylor polys vanish at
x = 0, I don't t hink it is a good first  example.]  I would also have them
check for the approximate interval on which f and the Taylor polys are
within, say, .001 of each other, expecting results like those given below.



cos x-p (x) �.0016 cos x-p (x) �.00112

Viewing Window 

Testing the error to the .001 level on p  and with p : 6 12

These graphs say that cos x and the 6  degree Taylor polynomial are withinth

.001 of each other on the (approximate) interval (-1.4,1.4), while cos x and
the Taylor 12  degree polynomial are within .001 of each other on theth

(approximate) interval (-3.5,3.5).

The window for all the graphs above:

Direction:
The extension of this idea, finding Taylor
poly nomials for functions centered at a general x = a, would be natural
graphic ally since my students have done much work with horizontal
translati ons.  And with this foundation, we are then well on our way to
understanding  what it means to say that a function f(x) can be expressed as
an infinite series--something which took me quite a while to come to grips
with.
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