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Introduction. Dynamical systems is the study of any process that changes with time.
Within this broad classi¯cation are the two branches of dynamics: the continuous and
the discrete. Continuous dynamical systems involve the study of physical systems with
a continuous time variable, as in the case of a simple pendulum moving under the
in°uence of gravity. Such systems are often modelled by di®erential equations, and one is
interested in understanding (at least qualitatively) solutions to these equations. Discrete
dynamical systems are concerned with models of processes which vary at regular, ¯xed
time intervals. For example, °uctuations in the stock market on a daily basis or the
spread of measles in a given city on a monthly basis represent discrete dynamical systems.
Continuous dynamical systems can often be reduced to discrete systems by sampling
solutions to the di®erential equations at multiples of a ¯xed time interval (and in more
general ways as well; see [5, x1.5]). Discrete dynamical systems, or iteration of an
appropriate model function, thus arise naturally in our attempts to understand the real
world.

This paper presents a brief summary of a week long module on iteration that I incorpo-
rate into the ¯rst semester calculus curriculum. The connection between iteration and
¯rst semester calculus is very natural. As the reader will see, the derivative plays the
leading role in understanding the long term behavior of iterates of a function. Secondly,
Newton's method is a classical iterative scheme which exhibits surprisingly complicated
dynamics when viewed on a global scale, i.e., away from the zeros of the function in
question. For these two reasons (and because it's fun!), iteration ¯ts very naturally into
the ¯rst semester calculus curriculum.

Iteration. Let F : R ! R be a function de¯ned on the real line. Given an initial
point x0, the orbit of x0 is the sequence

x0; F (x0); F (F (x0)) = F 2(x0); F (F (F (x0))) = F 3(x0); : : : ; F
n(x0); : : : :

The simple question one would like to answer is \What happens to an orbit over time, or
as n!1 ?" At times this question is as easily answered as it is posed. If F (x0) = x0,
the orbit of x0 is x0; x0; x0; : : :. Such a point x0 is called a ¯xed point of F . If for some
point x0 and a smallest positive integer n we have Fn(x0) = x0, the orbit of x0 simply
repeats or cycles every n iterates. Such a number x0 is called a periodic point of period n
for F . What other types of behavior are possible? As the students realize very quickly,
a process as simple as iteration can lead to amazingly complicated long term behavior.
The students are required to investigate these possibilities through the following three
computer lab assignments, which comprise the week's homework assignments.



Lab 1. We begin with the two parameter family of linear functions F (x) = ax+b, where
a and b are real parameters. The students are introduced to an electronic spreadsheet
in class, then asked to determine the fate of all orbits for this linear family using the
spreadsheet in the computer lab. This is not as daunting a task as one might at ¯rst
suspect; experimentally most students arrive at the conclusion that if jaj < 1 all orbits
converge. If jaj > 1 then all orbits, with the exception of the unique ¯xed point, diverge
to in¯nity. The reader is left with the case jaj = 1. The simplicity of the long term
behavior of the orbits is ideal for this ¯rst lab as the students are also learning how to
use the spreadsheet.

One astute student showed by induction that, for this linear family,

F n(x0) = anx0 + b
n¡1X
i=0

ai = anx0 + b
µ
1¡ an

1¡ a

¶
:

Hence, if jaj < 1; F n(x0) ! b=(1 ¡ a) as n ! 1, where b=(1 ¡ a) is the ¯xed point
of F . Likewise, if jaj > 1 the orbit of x0 diverges to 1. We conclude Lab 1 with a
discussion relating iteration of linear functions with models of real life discrete dynamical
systems. In particular, simple linear growth/decay population models, and a model
for the principal in a bank account given a ¯xed interest rate compounded monthly,
subject to monthly deposits/withdrawals, are discussed as members of the linear family
F (x) = ax+ b. Thus iteration determines the long term behavior for these models.

Lab 2. It is natural to next consider families of quadratic maps. Motivated by a
population model for a species in an environment with limited resources [2, x1.1], we
consider the one parameter logistic family Fa(x) = ax(1 ¡ x). The real parameter
a 2 [0;4] is called the growth factor, while x 2 [0;1] represents a percentage of a limiting
population level for the given environment. The question once again is \What happens
to orbits over time?", and in this case the answer is not so apparent!

In Lab 2 students are provided with a list of a values and asked to determine via the
spreadsheet the long term behavior of most orbits. For 0 · a < 1 they ¯nd that orbits
tend to 0, so that the population becomes extinct over time. For 1 < a < 3 however,
orbits converge to a unique, non-zero value which increases with a. Now letting a run
from 3 to 4 students encounter the \period doubling route to chaos" [2, x1.17], including a
values for which the orbit of x0 is apparently a random list of numbers. The dynamics for
the logistic family are strikingly complicated and students are not expected to classify all
possible long term behaviors. They are required, however, to make a (rough) bifurcation
plot, in which the limiting behavior of orbits is plotted versus the parameter a. A
computer generated bifurcation plot is presented in Figure 1. We then use commercially
available software to investigate the wonderful richness of the bifurcation plot, including
a brief discussion of Feigenbaum's universal constant [3, x10.4].

What is the connection between the above investigations and ¯rst semester calculus? Fix
a 2 (1; 3), and let x = p be the limiting value of all orbits for that a value. Note that p
must be a ¯xed point for Fa as it is the limit of the sequence of iterates of the continuous
function Fa. Since orbits converge to p as n!1, p is called an attracting ¯xed point.



What is the source of this \attraction"? Students have seen that the tangent line to the
graph of a function at a given point is the best local linear approximation for the graph
near that point. Thus, given an x0 near the ¯xed point p; the orbit of x0 under Fa should
behave roughly like the orbit of x0 under the linear map corresponding to the tangent
line at the point (p; p). This linear map is given by the equation L(x) = F 0

a
(p)(x¡p)+p,

Figure 1. The bifurcation plot for the logistic family Fa(x) = ax(1¡ x):

which has x = p as its unique ¯xed point. From Lab 1 we then have that if x0 is close
enough to p its orbit under Fa converges to p if jF 0

a
(p)j < 1. One readily computes that

p = (a ¡ 1)=a and jF 0

a
(p)j = j2¡ aj < 1 since a 2 (1;3). Thus it is the derivative of Fa

at the ¯xed point x = p (and of F n

a
at the periodic point p of period n for the attracting

periodic orbits visible in Figure 1) which governs the local behavior of orbits near the
¯xed (or periodic) point. The students are led to the following theorem.

Theorem. Suppose F : R! R has a continuous derivative. If F (p) = p and jF 0(p)j < 1
there is an open interval I containing p such that for any x 2 I; F n(x)! p as n!1.

Proof. Since F 0(x) is continuous, pick ² > 0 and A > 0 so that jF 0(x)j · A < 1 for
x 2 (p ¡ ²; p + ²). Suppose jx ¡ pj < ². By the Mean Value Theorem there exists c
between x and p so that jF (x)¡ F (p)j = jF 0(c)jjx¡ pj. Since F (p) = p, we have

jF (x)¡ pj · A jx ¡ pj < jx ¡ pj:

Thus, F (x) 2 (p ¡ ²; p + ²), and one can repeat the argument. By induction we have
jFn(x)¡ pj · Anjx¡ pj, implying Fn(x)! p as n!1.

Remark. If F (p) = p and jF 0(p)j > 1 there is an interval I containing p such that the
orbit of any x 2 I; x 6= p, eventually leaves I. Such a point p is called a repelling ¯xed
point. Thus, for a ¯xed a slightly larger than 3, Fa has an attracting cycle of period 2



as in Figure 1. The ¯xed point p = (a ¡ 1)=a still exists, but jF 0

a
(p)j > 1, and hence it

is no longer attracting and does not appear in the bifurcation plot.

Lab 3. After introducing Newton's method in class as an iterative process used to
approximate solutions to equations F (x) = 0 students are given Lab 3. For this assign-
ment students must investigate the dynamics of Newton's method for the one parameter
family of cubics Fc(x) = (x+ 2)(x2 + c); c 2 R, with associated Newton's method map
Nc(x) = x ¡ (Fc(x)=F 0

c
(x)) (see also [1]). This is more of an open ended assignment as

¯rst semester calculus students cannot be expected to completely work this out on their
own (perhaps this lab would be better assigned as a group project). They can however
make progress in understanding the behavior of orbits under Nc in the case c < 0, when
Fc has three real roots. When taken from a global perspective (what happens to all

orbits on the real line?) the dynamics, while not as complicated as in Lab 2 with the
logistic family, are still quite interesting [6]. The students are also provided with leading
questions with which to investigate the c > 0 case, and surprisingly they again ¯nd
attracting ¯xed points, two cycles, four cycles, etc. as c is varied. This naturally leads
to the consideration of a bifurcation plot for the one parameter family Nc, which in this
case is a one parameter family of rational maps. It turns out that if Nc has an attracting
periodic cycle the orbit of at least one critical point must converge to this attracting
cycle [4]. A computation yields

N 0

c
(x) =

Fc(x)F 00

c
(x)

(F 0

c
(x))2

;

so the critical points of Nc are the zeros of Fc and x = ¡2=3 . Note that Fc(p) = 0
implies Nc(p) = p, so that zeros of Fc are ¯xed points for Nc. Thus to draw the
bifurcation plot in Figure 2 one plots the parameter c versus the limiting behavior of
the orbit of x = ¡2=3. Surprisingly we see the quadratic bifurcation plot buried within
Figure 2; there are in¯nitely many copies, several of which can be discerned in Figure 2.
This suggests that the period doubling route to chaos is a rather ubiquitous phenomenon
in systems undergoing transitions to chaos.

What makes Newton's method work if one begins su±ciently close to a point p satisfying
F (p) = 0? Students show that for such a p; N (p) = p and N 0(p) = 0, so that zeros of
F are attracting ¯xed points for the Newton map N . We conclude with a discussion of
how the rate of convergence of Newton's method to p is in°uenced by N 0(p) = 0. That
is, we discuss why Newton's method converges so quickly when it in fact does converge
to a zero of F .

Conclusion. In this module ¯rst semester calculus students are excited to see how
simple processes often have very complicated consequences. Iterating a function is a
simple process, yet the results are often very complex. Iteration is also well suited
for ¯rst semester calculus as students come to realize that the derivative at a ¯xed or
periodic point determines to a large extent the behavior of orbits over time. The view
of the derivative as locally contracting or expanding intervals is a nice alternative to its
traditional interpretation as the slope of the tangent line to the curve. Students also



see Newton's method in a new light and are surprised and fascinated by the intricacies
of the dynamics. From student responses this week long module on discrete dynamical
systems is a success and is one that I will continue to present in future sections of ¯rst
semester calculus.

Figure 2. The bifurcation plot for the family of Newton maps Nc. As evidenced by the

zoomed in plot on the right, iterates of Nc are \quadratic like" for certain ranges of c values.
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