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Student Knowledge. Evidence abounds that many calculus students are
learning to execute tasks in a routine, algorithmic fashion while lacking very
basic conceptual understanding of the topics being studied. For example,
Table I gives results of several final exam questions given to approximately
200 students who were completing an introductory calculus course. The
examples in this table demonstrate that we are having remarkable success on
algorithmic problems. Some would say that with a little more practice we
might insure a short life span for the HP-28C.

TABLE I
Points on Selected Drill and Template Problems

Question Percent of Total
1. Find dy/dx: &**Y = sin y 867
2. Find dy/dx: y = x" cos(@y) 927%
3. Integrate: J' xZ X dx 897
4. Integrate: J" 3 die 737
: 1[12 +1)
5. Find the first three terms of the 90%

Taylor series for f(x) = Qf; about 1.

6. Find the area of the region bounded by 867

y = 4x - xz and y = xz.

The same student subjects reported on in Table I were given a Calculus
Concept Test during the final week of the semester. Three of the problems on
this test are reported in Table II. The results on these problems suggest
that many students do not recognize the derivative presented in symbolic form,
and that they are unable to formulate or interpret geometric representations
of fundamental concepts. MNot only did students have conceptual difficulty
with fundamental concepts of calculus, but problem 2(a) indicates that almost
407 of these students had conceptual difficulty at an even more basic level.
These students were unable to correctly interpret the relationship between a
function and its graph. This suggests that many of the intuitive explanations
that instructors use in the classroom may be of 1ittle benefit for many
students. The results on problem 3 indicate that when students had no




TABLE II
Calculus Concept Test

Question Percent Correct
1. Suppose f, f' and f" are differentiable 22%

and that f(5) =9, f'(5) = 4 and f"(5) = -1.

Find 1im f{5 + h}) - f(5) .
h=>10 h

2. Suppose line L is tangent
to the curve y = f(x) at 1
the point (5,3) as indicated (a.1)
at the right.

Find (a) f(5)

(b) f'(5) s 22%

2
3. Evaluate J, [x] dx 7%
=

"formula", they had nothing to fall back on. Their concept of the Riemann
integral did not allow them any alternative approach to the problem.

The examples that have been examined tend to confirm the contention that
even when students are emersed in the study of calculus, our instructional
emphasis results in conceptual knowledge that is indeed minimal. The evidence
may also suggest that many students have difficulty in relating geometric
explanations to the corresponding algebraic or symbolic representations of
fundamental concepts.

A Programming Example. Because many students are now entering colleges
and universities with experience in a programming language, we believe that
having students write computer programs could be helpful in developing
conceptual schemas related to the fundamental ideas of the introductory
calculus course. We have instituted a one-credit supplemental course in
computational calculus where students write their own programs to find limits,
right and left hand derivatives, Riemann integrals, solutions to equations,
etc. These programs, used in conjunction with graphics utilities (which
students do not write) are used by the students to investigate several
questions, among them the existence of derivatives and integrals for various
functions at specified points or on specified intervals. Other types of
questions are also investigated. It is quite easy, for example, to consider
functions with discontinuities and examine the limit of Riemann sums when
using left endpoints, right endpoints, midpoints or randomly selected points
in the subintervals. By running a few examples, and examining the numerical
output, students are easily convinced that the integral is independent of the
points selected.
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Table III lists several questions that were given on the Calculus Concept
Test to those same students referred to earlier in this paper, and also to a
group of 24 students who completed the computational calculus course. As can
be seen from these results, students who were enrolled in the supplemental
course appear to have developed richer schema related to both the derivative
and integral concepts.

Justification of programming. Three seemingly logical arguments are
often advanced for justifying the use of "canned programs" in calculus
instruction. One argument draws a parallel between the discrete nature of
computers and students' experiences with discrete situations. Discrete
numerical output belongs to the students' world, and is more likely to be
properly interpreted than are the symbolic representations of continuous
functions. Second, the graphics capability, and in particular the ability to

TABLE III
Concept Test (Percent Correct) Regular +
Regular Programming
Question Class Class
1. Suppose f, f' and f" are differentiable 22% 637

and that f(5) =9, f'(5) = 4 and f"(5) = -1.

Find 1im f(5+ h) - f(5)
h=>0 h

2. Supose line L is tangent
to the curve y = f(x) at
the point (5,3) as
indicated at the right.

Find f#ff;fﬁiff* :

(a) f(5) 63% 887

(b} £1(5) 227 467
2

3. Evaluate j | x] dx T 50%
-1

8. If f(x) = (x + 10 find 87 423

find Tim ffh} - §ﬂ}
h=10 h
5. What is the maximum slope of the curve 6% 467
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Suppose P is a partition of [0,7T/2] into 10% 67%
n subintervals, and u; is an arbitrary

point in the ith subinterval [x1_1.xi].

n
Explain why Tim 2 (cos u_i] ax_i = 1.
P> 0 5=

produce dynamic representations, provides a new dimension that was not
previously available. The human mind appears to be quite adept at processing
visual information of this type. And finally, the use of these software
packages in an experimental mode creates an environment that is more conducive
for learning. Detailed elaborations of these arguments can be found in the
literature, and there is beginning to appear a body of supporting research.

But what about the effects of programming itself. We believe the
following arguments lend support to the hypothesis that writing computer
algorithms can enhance the understanding of fundamental concepts and help in
developing mathematical maturity.

1. In constructing their computer programs to find limits, left and
right hand derivatives, Riemann integrals, etc., students are forced to deal
with the definitions at a more basic level, at a step beyond what is required
when merely examining numerical or graphical output from "canned programs".
They must pay attention to the language of mathematics, and deal with the
association between that language and their own conceptions.

2. The language used in programming can help bridge the gap between
natural language and the formal language of mathematics. Understanding a
sequence of programming code may enhance understanding of the associated
mathematical symbolism. Particularly when working cooperatively in a
laboratory situation, students have available another means for communication,
another language with which they may feel more comfortable.

3. When writing a computer program, students are put into a situation in
which they are doing the teaching. They are teaching the computer what to do.
As most teachers will attest, teaching a topic to someone else requires an
increased precision in ones knowledge of the topic, in terms of both
comprehension and expression.

4. When students use instruments (programs) of their own creation, their
mathematical investigations become intrinsically more interesting and
exciting. There is a creation of conflict when output does not conform to
expectations, whether from naive judgements, analytic or graphical analysis,
or by an instructors edict. Might there be added incentive to reconcile this
conflict when ones own creation is in error?

5. Creation of a satisfactory computer algorithm requires a degree of
planning, and creation of a sequence of logically developed steps that lead to
some intelligible results. Consequently its creation is not unlike developing
a formal mathematical proof. Since many Calculus instructors have given up on
requiring students to produce proofs, the development of computer algorithms
may be the next best thing.

It may be that the production and examination of computer algorithms can
put a Tittle more excitement and joy into both teaching and learning
elementary calculus. And though we have nothing against the use of "canned
programs" (they can be very beneficial), we believe that when students can
develop their own algorithms, their efforts are more akin to "doing
mathematics."




