236
The Natural Language Mathematics Testing System

Peter Rice
Mathematics De artment
University of Georgia

In the summer of 1985, the Mathematics Department of the University of Georgia
launched a project to design a computer system that would create, administer, grade
and record all of the regular exams given in College Al%Jebra. Since then, the project
has grown to include the testing of Precalculus and has been sold to other schools
where it is in use in a variety of courses.

The original idea was to create a system similar to the one designed by Stephen
Franklin at the University of California, Irvine. It utilized a database of questions
stored on a mainframe computer and administered exams with terminals. There were
two types of questions: questions that required a numeric answer and multiple choice

uestions.
: The questions requiring numeric answers were administered in a straightforward
manner. Sitting at a terminal, a student would work out the answer to a problem
using pencil and paper, then enter the answer. Checking the answers to such
problems amounted to comparing the response to the correct answer.

The major innovation of Franklin’s system was the "rolling" multiple choice problem.
The question was presented along with one of the possible answers. If that answer
was rejected it was removed and the next possible answer was shown. The student
continued replacing old possibilities with new ones until a satisfactory answer
appeared. However, no answer could be viewed or chosen once it was rejected. This
feature defeated the common practice of reviewing all of the answers to select the
most likely answer and required the student to know absolutely which answers were
correct and which were incorrect.

At Georgia, the designers were convinced that a more intelligent testing system was
within the scope of modern technology. Specifically, it should be possible to have the
student type in an expression and have the computer analyze it to determine whether
it was an acceptable answer to the question posed. For example, if the problem was
to factor a quadratic expression in x, the stugent could type in the answer using the
normal keys on a computer keyboard. The process of determining whether it was a
correct factorization would first check to see if the student’s response was
functionally identical to the correct answer, then to see that it was factored.

Determining whether two expressions are functionally identical can be a difficult or
impossible problem, depending on the class of functions allowed, but the class of
functions that is normally encountered in elementary mathematics courses is so small
that a practical test of identity is not difficult to construct. To determine whether
an expression is factored we compare the two factored expressions, the student
response and the correct answer, to determine whether their factors are the same.
Using procedures of this sort, we were able to produce grading procedures for
common problems.

Using a database of problems causes certain difficulties. The database has to be
large enough to ensure that the questions do not get passed around by the students,
or the tests would be compromised. If it is large enough to avoid such problems,
then it is difficult to construct and takes up a large amount of space. A better
method of preparing a large number of problems is to use algorithms that generate
specific problems using randomly chosen values for parameters. One algorithm can
generate hundreds or thousands of individual problems with unique answers and it
could be designed so that a single procedure would be used for grading. Since
between one and two hundred algorithms would suffice for a course, the problem
database could be reasonably small and easier to construct. The major difficulty with

this approach is that each algorithm has to be individually coded, requiring
programming expertise in addition to the ability to make up good mathematics
roblems.
X Another feature of Franklin’s system that did not attract us was the use of a
mainframe computer. Not only was there a large cost associated with setting up such
a system (or even renting space on an existing computer), there were the problems of
access and reliability. en a large machine is used heavily, the response can become
unacceptably slow, making it almost impossible to arrange timed tests. Also, when a
mainframe computer goes down, all of the testing system goes down with it. For
these two reasons, we decided to try to create the system on microcomputers, which
offered the advantages of low cost and freedom from catastrophic breakdown.

The major problems associated with developing a large system on microcomputers
turned out to be the speed and graphics calpacity of the machine and the existence of
an easy to use but l?owf:rful programming language. The display of algebraic
expressions called for graphics displays, and IE: processing of graphics causes most
small machines to slow down considerably. Luckily, we were able to develop a system
that was acceptably fast using assembler language on a PC clone. But most ler
machines, such as the Apple II series, Commodore, etc. were too slow or offered
unacceptably low graphics resolution to be useful.

The other problem was the choice of a programming language. While the developers
were competent in several languages, including assembler, we were planning to code
the algorithms for the problems, and hoped that this task could be distributed among
several people, not all of whom could be assumed to be so competent. At that time,
BASIC was not well suited to system development because it was not a procedural
language and had a 64K code and data restriction. Turbo Pascal 3.0 was much better
because, although it had the 64K size limitation, it allowed the use of overlays and,
using locally developed hooks into the operating system, we were able to have a
Turbo Pascal program load and execute another program. Also, Turbo Pascal was
becoming common and had an easy to use programmer interface. It took about two
i,;ears to reach the limits of the language, and development slowed down considerably

efore the introduction of Turbo Pascal 4.0.

At the gresant time, major Enrtinns of the system are being rewritten in C both for
speed and portability. An additional benefit of this conversion is the existence of
many highly competent professional C compilers that can push the PC to its limits.
However, the problem algorithms are still being written in Pascal for ease of support
and because C will never be a common language.

A number of other problems came up and had to be solved in the course of the
development of the system. Some were connected with the sheer mass of students
that had to be tested, some were associated with the general problems of computer
support and repair, and some have to do with the mechanization of the processes that
we as teachers perform one at a time for our students. Here are three examples of
such problems and a brief description of the solution.

1. In testing 1000 students per week on 35 computers, it is necessary to have the
computer lab open at virtually all hours. Instructors cannot be expected to be in the
room at all of these hours, so it was necessary to hire student assistants to man the
labs. As long as the system was designed to be simple to use and had good security
measures, this system proved workable.

2. Computers do break down. Whereas a system designed to be run on micros can
sustain the breakdown of a testing mm]guter, the file server must be working at all
times. By having a spare machine available and keeping good backups of data, it is
possible to a\rnig long delays or disasters. However, it is still helpful to have a rc:i\%
source of computer repair expertise. We discovered that routine repair tasks on
clones can be performed by untrained people, so equipment repair became a minor
issue.

3. When we test in class, we regularly accommodate students with disabilities. With
a computer testing system, such accommodation has to be built in to the system. We
designed the system to allow the operator to create a printed version of a test so
that students with specialdpmblems can be served in a more traditional way.

Because we were introducing technology to replace a traditional teaching function,
it was inevitable that the question of suitability arise. Our colleagues immediately
asked whether the system can test students as well as traditional methods. The best
answer to that question is the i)]erscmal testimony of teachers who have used the
system and can compare it with traditional testing methods. After two years of
experience, their testimony is that the system is as effective at testing students as
the traditional method and, in some ways, does a better job.

However, complete evaluation of the system is more complex because it does more
than just replace a traditional function of the teacher, it fundamentally alters the
teaching environment. For example, it is designed to be used by students at their
convenience, so all the students in a class do not take tests at the same time. This
makes it possible for students who take the test later to gather information on the
tests that have been given to their friends. Does this availability of extra
information compromise the test? Also, since there is quite a bit of information
about tests floating around, do the students concentrate on learning how to pass the
tests and not on learning mathematics?

We have explored one statistic that sheds light on these questions. We have some
data on the grades of students who took a computer grade Erecalculus course (all
tests, including the final exam, given on the cnmputerg) and those taking a
traditionally graded precalculus course along with their grades in the subsequent first
quarter of calculus. After normalizing the precalculus course for grade average (in
non-computer graded courses, class averages differed considerably), both groups had
the same expected performance in calculus. That is, the computer graded precalculus
student can expect his calculus grade to be .79 lower than his precalculus Bgrade, while
the student having the traditionally graded course can expect a drop of .78. This
statistic indicates that the computer testing system did not promote rote learning of
exam questions to a greater degree than the traditional testing system.

The system is being extended, expanded and continually evaluated, and has now
been installed in other schools. Short term development goals include enhancing the
system so that it may be used in calculus courses and looking at applications of the
system in schools.

