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INTRODUCTION

In order to illustrate concretely the concepts encountered
in a course in probability and statisties it is necessary to
perform probabilistic experiments repeatedly. Simple examples
are flipping coins and rolling dice. It is common that
instructors have their students actually perform such experiments
many times to illustrate a particular theoretical result. An
obvious drawback of such procedures is that the collection of a
sizable amount of data is tedious and time consuming. If fast,
accurate methods for obtaining sample data were available, time
could be saved, boredom eliminated and the learning process
enhanced.

Here, of course, is where the computer is useful. All of
the common probability distributions can be simulated by the
computer wvia the random number generator, Furthermore, Bven
today's inexpensive microcomputers are equipped with random
number generators which are adeguate for this purpose. The
generator produces a sequence of independent observations which
are uniformly distributed on the unit interval. {Henceforth, the
notation U{(0,1) will be used for this distribution.) These in
turn can be transformed, using results from probability theory,
into independent obserwvations from other distributions.

Given the capability of generating sample data from a
desired distribution, the instructor can begin to design
laboratory experiments which wuse the data to teach concepts.
Elliot Tanis of Hope College in Holland, Michigan has written a
laboratory manual [1] consisting of such experiments. The manual

is used in a one credit laboratory which students take
concurrently with a three credit lecture course. The purpose of
this paper is to present examples of methods for simulating
distributions, and to suggest techniques useful for designing
experiments, like those of Tanis, which can be performed by
students on their own computers or in the laboratory, It is
intended that the experiments provide not only concrete

illustrations but alseo the motivation to study and understand the
underlying theory.

SIMULATING DISTRIBUTTIONS

For the most part students are able to develop simple
algorithms of their own for simulating the common discrete
distributions, since most of these depend on repeated Bernoulli

trials. The binomial, geometric, negative binomial and
hypergeometric are examples of such distributions. Of the common
distributions, the Poisson 1is an exception; it cannot be

simulated (exactly) using Bernoulli trials. A technique for




simulating the Poisson distribution is presented in the next
section.

The theory behind simulating the continuous distributions is
richer and more rewarding than that of the discrete
distributions. One of the most useful theorems in simulating
continuous distributions is the following:

Theorem 1. If the continuous distribution funection F(x) 1is
strictly increasing over 0<F{x)<1, and if random variable U has
the U(0,1) distribution, then the random wvariable X=F-1(U) has
distribution funetien Fi{x}.

The theorem is presented in several text books and tends to be
difficult for students to understand. If the student has the
opportunity to make use of the result, however, he/she may be
better motivated toward an appreciation of the result. Two
examples of how this theorem may be used to simulate
distributions follow. In each case random wvariable X 1is
expressed as a function of the random (number)} wvariable V and X
has the desired distribution.

Example 1. The Uniform Distribution, Ufla,b).

In this case F(x}) = (x-a)/({b-a) for ai{x{b. Solving U = F(X)
vields
X =a + :b_alqu

Example 2. The Exponential Distribution, E(a).

Here F(x) = l-e-x/a for x>0, a>0.
Again solving U = F(X) for X results in
X = =a lnf{i=-U.

The simpler statement X = - a Iln U can be substituted since 1-=U
also has the U({0,1) distribution.

In order to wuse this method the equation U=F(X} must be
solved analvtically for X in terms of U. Closed form =solutions
do not exist for some of the common distributions. The Gamma and
Normal distributions are examples. A Gamma distribution with
integral shape parameter, however, can be simulated as a sum of
exponentials. The Normal distribution can be simulated using the
Box-Muller transformation, which 1is discussed 1in the next
section. ©Of course, from the Normal distribution can be obtained
the t, F and Chi-Square distributions.

EXAMPLES OF EXPERIMENTS AND TECHNIQUES

One of the most illuminating techniques for studying the

distribution of random data is the histogram. Consider an
experiment in which &a histogram of data from a Poisson
distribution is constructed. The Poisson distribution is

simulated by making use of the fact that, in the Poisson process,
interarrival times have an exponential distribution. Simulation




of the exponential distribution was discussed in the previous
section. Exponential wvalues are observed one at a time  until
their sum exceeds one. Subtracting one from the required number
of observations y¥ields an observation from a Poisson distribution
with mean equal to the reciprocal of that of the exponential.

Appearing in Figure 1 is a histogram of 1000 Poisson wvalues
whose distribution has theoretical mean equal to three. A graph
representing the expected number of observations has been
superimposed in order to provide a comparison of observed versus
expected. The sample mean and wvariance were computed and
displayed for the purpose of comparison with the theoretical
values. The same procedures can be applied to any distribution
which can be simulated.

As another example consider the task of illustrating the
Central Limit Theorem, one of the subjects most important
results. As a limit theorem, it is difficult for undergraduate
students to understand. Loosely speaking, the theorem guarantees
that the sample mean from any reasonably well behaved
distribution, when standardized, is approximately standard normal
in distribution. The quality of the approximation ({(or the
rapidity of convergence) is wusually not discussed in
undergraduate texts.

Let random wvariable W be the sum of n independent U(0,1)
random variables. If n=2 the density is triangular in shape.
For n=k the density consists of k polynomial arcs, each of degree
k-1, pieced together. Even for a value of n as small as n=4, the
density of the sum is quite "normal” in AppeATaAnce.
Histograms representing 250,000 values obtained for the n=2 and
n=4 cases are given in Figures 2 and 3. The data have been
standardized and the standard normal density superimposed. The
triangular nature of the density is clearly apparent in the
histogram in Figure 2. The histogram in Figure 3 indicates the
goodness of the approximation even for a very small sample size.

The importance of the normal probability distribution is
evidenced by the Central Limit Theorem. Clearly it is desirable
to be able to simulate this distribution. Data from the normal
distribution can be used to design a variety of experiments for
students of probability and statistics. Problems involving
estimation, sampling, confidence intervals, regression and
analysis of wvariance are some examples of topics whose concepts
can be illustrated using normal sample data.

As mentioned in the previous section, normal sample data
cannot be obtained by the method of inverting +the distribution
function. There is a method which transforms a pair of
independent U(0,1) random variables into a pair of standard
normal random variables. The method is due to Box and Muller
[2], and the transformation is given by

X = ,/-21ln U cos 2TV

¥ = A,‘-Eln U sin ZTV

Here U and V are the U(0,1} variables and X and Y are the
independent standard normals.

The problem of showing that the transformation actually
works appears in several texts. It is a rather straightforward




exercise using +the Jacobian to obtain the bivariate density.
Some texts mav mention that the transformation is useful for

simulation, but students often want to know how the authors came
up with the equations.

Once it is pointed out +that it 1is merely the polar
coordinate transformation students seem satisfied. The random
variable © = 271V is uniform on the interval (0,2wm). Sinrca X1 +
Y2 = R?, the random wvariable R is the square root of a Chi-square
random variable with 2 degrees of freedom. The latter

distribution is exponential so that bhoth o and R are easily
simulated.
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CONCLUDING REMARKS

The previous example, although not actually a simulation
experiment itself, reveals the primary purpose of the
experiments. The need to find a transformation which y¥ields data
from a particular distribution is realized, A transformation
which does the job is presented in class along with its proof.
It is likely that the student will have a greater appreciation
for a mathematical result and the underlying thecry if he/she has

direct experience inveolving its application. In general,
carefully designed experiments can lead to desirable educatinonal
outcomes. Thoughtful instructors may find the time investment,

both on their part and on the part of their students, vyields
valuable dividends in motivation and learning.
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