_—___._
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In higher education mathematics is at an in-
teresting juncture. We are in the midst of a shift in
the environment for processing ideas and informa-
tion. Technology is becoming a pervasive element
of the context in which we operate as faculty in
colleges and universities. Changes in environment
tend to be irreversible. Short of major traumatic
events, technology is here to stay as a feature of
the environment in which we live and operate,

The challenge is simple: Do we use the tech-
nology in teaching mathematics, or do we Latinize
the curriculum and our instruction? We can turn
mathematics into a dead language. Alternatively,
we can examine that environment to see:

o How can we capitalize on the positive charac-
teristics?

s Are there actions we can take to smooth the
transition to incorporating constructive use of
technology in instruction?

s  Are there features that change how we should
design curriculum, instruction, and testing?

John Harvey (these proceedings) has made in-
sightful comments concerning testing and teach-
ing. I am electing to elaborate on some of the
themes he has established partly to reinforce some
of his wisdom and partly to examine some other
features of what I perceive as critical in using tech-
nology in mathematics instruction. Ten years ago,
I could not imagine myself making a presentation
of this sort. I resented the computer. I saw it
between me and the mathematics I wanted to do
or to teach; a clumsy hurdle that I elected not
to hurdle. I saw mathematics teachers in high
schools teaching courses titled “Computer Algebra
I1” where the teachers spent a third to a half of the
instructional time teaching programming rather
than mathematics. I saw that in most instances
students were encountering significantly less math-
ematics and learning considerably fewer ideas and
skills.
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But the computer software and hardware has
changed. Access to mathematics via technology is
easy and direct. Menu driven technology and sig-
nificantly greater power makes the mathematical
ideas readily available. Indeed, I can readily shift
to instructional methods that help students deal
directly with problem solving, modeling, and gen-
eralization concerning a variety of mathematical
ideas. The computer appeals to my basically con-
servative orientation to curriculum and instruc-
tion: I can feature mainline skills, understandings,
problem solving and proof better with technology
than without. I project this improving as the tech-
nology continues to evolve.

Following, I will identify some critical issues
that we need to deal with in teaching and test-
ing mathematics in a technology enhanced envi-
ronment for mathematics instruction.

Testing

Computers and calculators should be used
throughout testing in mathematics. However, we
need to enlarge testing and evaluation to encom-
pass one feature of student performance seldom
recognized as important in the environment for
doing mathematics. We must begin to focus on
whether students choose the most appropriate tool
for a problem situation in mathematics. Indeed,
we need to adjoin this type of behavior to our set
of goals for mathematics instruction. Last week [
observed a student in precaleulus locating the ze-
ros of a function. The function was quadratic and
readily factorable. The student in this quiz situa-
tion elected to graph the function with a graphing
utility. He made some very correct moves indicat-
ing he understood the mathematics of functions
and graphs. He even dealt with the idea of error
correctly. But, he had no decision tree to help him
decide whether it was appropriate to work with
paper-and-pencil or to use the computer graphing
package. He wasted considerable time in chang-
ing the viewing rectangle and dealing with error
in reading the graph; he should have simply fac-
tored the polynomial to obtain the zeros. He did
not look at the exercise and make a decision about
whether he should use the technology or not.




We must work to teach the judgment of which
tool to use to do mathematics. Further, we
must design testing alternatives that will examine
whether or not students are attaining that judg-
ment. I think that Harvey’s comment about the
fear of the technology turning students’ heads to
mush reflects, in part, that we have not recognized
that we need to expand what we look for in ex-
amining mathematics behavior to encompass the
choice of tool to be used for particular mathemat-
ics. The National Council of Teachers of Mathe-
matics Curriculum and Evaluation Standards for
School Mathematics (Commisision on Standards
for School Mathematics, 1989) argue that this is
an important judgmental skill for every level of
the curriculum. Figure 1 indicates the decision
tree that the Recommendations advocate for every
student to understand and employ. I think the de-
cisions are important for students at the university
level.

(FREOBLEM SITUATION

Figure 1. Decisions About How to Calculate

What Do Test Items Measure? An issue of
prime concern is whether testing in the paper-and-
pencil format does accommodate without signifi-
cant adaptation to evaluation in a technological
environment. We do not always know what stu-
dents respond to or what understandings trigger
correct responses.

Following are four items (Figures 2-5) we
used in testing precalculus classes in the Calecula-
tor and Computer PreCalculus (C? PC) Project.
The items are relatively standard fare for fune-
tions and graphing. The items were tested in two
formats, one with a graph present and the other
without the graph. The data given are the cor-
rectness rates on the items in the two formats. In
some cases it appears the graph is a significant
help; in others, not.

The first item appears on the surface to be
of a type that the graph should help the correct-
ness rate. In fact, the data indicate no such power
obtains from the presence of the graph. One can
argue that the typical student appears to sum-
mon the two-point algorithm and, if anything, the
graph confuses. In an era when graphing utilities
and calculators are readily available, do we know
what we are testing?

In a Cartesian coordinate system, what is
the equation of the straight line passing
through point (0,—5) and parallel to the
straight line whose equation is y = 2r+37

z+2y+5=0
dz—y-5=10
2r4+3=-5
2r—5y+3=0
2z24+y+5=0 ¥

moows

y=1x +3

(0,-5)

Figure 2. First C2? PC Example Item

Pretest Postiest
Graph 53 T4
No Graph a0 73
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The second item appears to be moderately
casier without the graph. Can we tell whether Which of the following, (z—1),(z—2), (z+
students think numerically or examine and inter- 2),(z—4), are factorsof z® —4z? —z +47
? g
pret l-!'IE g,ra._p_h. I_f§ student enters t.h_lﬂ item on a A. Only (z—1)
graphing utility, it is the same as having the item
R . ; B.Only (z—1) and (z+2)
given in the graphing format. Apart from the time C. Onl 9) and (z+2)
it takes to enter the function on the utility, do we < 0uly (92} anc. (2
know what is triggering the students’ responses? DAty (a4 3) ‘sad (=-4)
E.Only (z—1) and (z+4)
¥
If zy=1 and z is greater than 0, which
of the following statements is true?
L A. When z is greater than 1,y is nega-
= tive.
k.- B. When z is greater than 1,y is greater
than 1.
C. When z is less than 1,y is less than
L.
ID. As z increases, y increases.
% E. As 2 inereases, y decreases. Figure 4. Third C? PC Example Item
i r 1 Pretest Posttest
- T Graph 44 81
No Graph 35 54
=1
T The function f, defined by
+ t i b
_@=1)@z+Y)
T &)= neE-2
T is negative for all = such that
T A -l<z<3
it B. -5<r<2
Figure 3. Second C? PC Example Item S
D. —2<z<2 or 2<z <]
Pretest Posttest E.-l<z<3 or1<z<2
Graph 66 72 .
No Graph 61 78 1
The remaining two items have results that are ]
in more of the predicted direction. The graph ap- 1
pears to help in producing correct answers. How- T
ever, the use of a graphing utility completely re- 1
arranges the time demands of the item. Our judg- ‘_‘_"_-‘HHT\\ 2
ments of how long an item will take go out the 1
window with the use of a graphing utility. And b
we need to assure some sort of comparability of 5
equipment for our students. Figure 5. Fourth C 2pc Example ltem
Pretest Posttest
Graph 25 654
No Graph 23 39
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At issue: What features do we build into
items when students have ready access to com-
puters or calculator graphers while taking tests?
Do we know what students react to or what they
have learned? How does the ready availability of
a graph change our information base for judgment
concerning what our students know (and how we
should assign grades)?

The above item performance was offered with-
out eareful analysis nor much comment. In
fact, the Ohio State group has been examining
more systematically how students acquire and use
graphical information. Vonder Embse (1987) ex-
plored eye fixation patterns of students in read-
ing graphs of polynomial functions, and Brown-
ing (1988) developed a graphing levels test. These
studies indicate that the assumption common to
mathematics instructors that a graph has intu-
itive explanatory power simply does not wash for
‘most students. The behaviors and understandings
are learned but are significantly more complicated
than most mathematicians realize. We must teach
students how to use graphs and help them build
the intuitions that associate functions and graphs.
We need more studies of graphing behaviors in
order to tailor instruction to uses of technology.
Technology intensifies that old problem of know-
ing exactly what given items measure. As we move
to using computer graphics and symbol manipu-
lators in testing, we must assiduously address this
problem recognizing that the new testing environ-
ment means that we are operating in a context
that is somewhat new and that we will make some
mistakes. We are convinced that students should

be tested with technology.

Using Technology to Restructure Manage-
ment of Testing. Third, can we use technology
to assess student performance more thoroughly
and efficiently? For example, computer-based
item pools allow keeping records on a per item
basis in order. The power, as well as the effec-
tiveness, of items in assessing given behaviors for
particular types of students can be used to im-
prove assessment. A bit of attention to develop-
ing such item pools will allow building a better
match among courses, curricula and testing. A
second element of using technology to restructure
assessment can provide a means of decreasing the
investment of student time in writing tests. Com-
puter generated testing provides the capability of
using the response to a given item i to guide the
selection of the next item (i + 1) as indicated in
Figure 6 below. The potential of response pat-
terns indicating sorting levels for selection of next

items can shorten the number of items students re-
spond to appreciably. This assumes attention will
be given not only to ascertaining the characteris-
tics of items but also what given responses to items
mean. Lord (1980) provides a helpful discussion
of design, statistical and administrative features
of such a tailored testing program.

Students in freshmen and sophomore level
courses typically expend five to eight clock hours
for exam taking in every mathematics course. How
would vou use the additional instructional time
if you only had to invest one to two hours for
testing? The response-dictated item selection pro-
cess demands a different view of testing than most
of us have grown up with and may require that
mathematics departments consider thinking about
acquiring staff with the appropriate expertise in
testing mathematics and using technology to work
with the instructional staff.
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A

[==

Each lem | i1 muliple choie
producing threa levels of
rcipanse.  The leved of
responss 10 fem § diciics dhe
selecilon of e men wem [+
Th Lewels af maponse oa
threz ema with perfen
branching weuld “san”

inia up w 1T leveli
Anigning ilcms with overlip
For i bonom of oac level and
ihe top of snodar s fedicascd
by ibe boacs would allew
Sludesy W fetoupe, i pan.
:Ine-r perfesmanze 68 & piven
em,  Thus, wieer thice Mema,
we would have 19 Bevels.

A
sof Jub Jof duf ok def fuf Jof 1s

Figure f. Assignment of Levels of Performance through
Response Dictated ltem Selection

In summary relative to testing, Harvey and I
share the strong belief that technology in the form
of caleulators and computers must be used in test-
ing and evaluation. Evaluation must include how
students select which computational tools to use
for given mathematical sitnations. Use of tech-
nology means that our insights into what given
items measure must be expanded and adjusted for
the change in the context of testing. Finally, the
use of computers to manage the testing process of-
fers the potential of improving the match between
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testing and curriculum as well as providing dif-
ferent means of structuring tests. However, part
and parcel to restructuring testing means that we
must gain more information concerning item and
response characteristics.

Teaching

The use of technology will redirect your teach-
ing and your thinking about curricular emphases.
Decisions you make concerning content selection
and treatment will change. 1 have visited a num-
ber of classrooms during the last two years that
are using the technology enhanced curriculum of
C 2 PC. The following comments concern the redi-
rection of teaching and the decisions that seem
obvious to me from my observations.

Exploring, Experimenting and Problem
Solving. Use of graphing utilities encourages a
more mathematical behavior on the pari of stu-
dents. Given a function, students can try things
to see the effect of given parameters. One of our
students in working with polar equations accepted
the challenge of figuring out the effects of change
of parameters in r = asinnf by experimenting
with the choice of n. Most mathematicians have a
good sense of what happens with different positive
integers. Our student experimented with rational
number replacements of n as an extension. (Do

you know what happens for n = % for different
choices of k 7)

The good news is that such experimenting
and exploring leads to an attitude of conjecture
making and testing. We want to encourage such
powerful mathematical behaviors. It seems a
natural outcome of using computer or calcula-
tor graphing utilities if you are experimentally
inclined. The bad news is that ready access to
graphing utilities does not necessarily lead to ex-
perimentation and exploration. In fact, teach-
ers can be as didactically rule-oriented with ex-
ploratory tools as they were without. They can
damp students’ exploratory ventures. Teachers
must instruct for the goal of conjecture making
and testing; it doesn’t happen automatically.

Students who matriculate in primary and sec-
ondary schools through mathematics dominated
by the traditional three-step instructional process—
giving a rule, working an example and directions
to go do likewise with 30 similar exercises—need
to be carefully introduced to exploration and ex-
perimentation as the mode for doing mathematics.
Teachers, whether at the school or university level,
need help in designing instructional activities to
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promote the shift from rule-dominated mathemat-
ics to a more exploratory mode.

The Information Base for Change. The
rigidity of many mathematics department faculty
across the country in thinking about the use of
technology in lower level mathematics courses is
impressive. Harvey discusses the reasons for resis-
tance to change identifying laziness, apprehensions
concerning change, the fear of a mush-brain men-
tality being created within our students and the
sheer magnitude of the problem of providing suf-
ficient equipment in many of university setlings.

It is hard to quarrel with Harvey's discussion
of the reasons for mathematics programs failing to
change. I would like to supplement and reinforce
his arguments. Many mathematics faculty are not
informed concerning effects of using technology in
teaching. Research evidence is overwhelming in
favor of using caleulators. My colleague Mari-
Iyn Suydam who ran the National Institutes of
Education supported Caleulator Information Cen-
ter for several years carefully collected informa-
tion about effects of calculators on computational
skills for several years. Her compilation of stud-
ies for which students were evaluated on paper-
and-pencil computation but which compares per-
formance of groups taught with calculator to those
taught without summons attention. The results of
more than 100 such ealculator horse race studies
are summarized in Figure 7. A beiting person
would favor the use of technology; 47 percent of
the studies have the groups taught with the caleu-
lator winning on the paper-pencil evaluation tasks
and only in seven percent of the studies does the
paper-and-pencil group win the evaluation race.

Calculajors Mo Calculators
JLose | Difference ] Win |
| ™ | [TE) ] 4T% |

Figure 7. The Calculator Horse Race

Most faculty in mathematics departments do
not read mathematics education research litera-
ture and are not familiar with such results. They
argue for or against curricular and instructional




reform with no knowledge base often incorporat-
ing the specious logic of generalizing from a single
personal instance. In an era of profound change in
the environment for teaching and learning math-
ematics, mathematics faculty should read about
the attempts to study systematically the effects
of using technology in instruction in the litera-
ture of mathematics education. Dealing with the
ignorance of colleagues while attempting to push
through a proposal for a course modification con-
sumes your creative energies that could better be
invested elsewhere.

David Cohen made the interesting comment
at the recent conference of the Psychology and
Mathematical Education convention in DeKalb
that we should not necessarily expect the research
institutions to lead the way in innovation. Com-
mitments to research and the correlated incentive
and resource structures impose a barrier to change
of instruction at such institutions. New equipment
monies, for example, are invested to support re-
search activities. More rapid implementation may
be expected at those institutions more directly
committed to investing resources in instruction
than at the premiere research institutions until
we arrive at a juncture where technological per-
formance capability affects research productivity
of faculty and students.

Pressures for Change from Below. A large
number of schools and teachers have shown strong
interest in the C2? PC precalculus course. Zal-
man Usiskin has noted comparable inquiry rate for
School Mathematics Project materials that make
extensive use of technology. Other evidence in-
dicates that many teachers are making extensive
use of technology in teaching. Experience sug-
gests that the better high schools, the ones send-
ing a major portion of students to tertiary level
education, are the ones who have the resources
of money and personnel to explore technology en-
hanced mathematics and are making pace setting
ventures in curriculum and instruction. This is
to say; a significant portion of the students to
whom we would normally look as the source of
good, sound mathematics majors enter the uni-
versity with experience using technology in doing
mathematics.

Query: How will such students behave in uni-
versity mathematics courses that make no use of
technology? Query: If you are required to teach
technology-free mathematics, how will you treat
such students? Query: Will such students elect
to major in mathematics if they encounter fresh-
men and sophomore level courses that make no use

of technology particularly if other departments do
feature technelogy in course work?

I think that if university mathematics facul-
ties are not careful they will drive many excel-
lent students to fields that have already joined
the modern age. Students who come from school
mathematics programs that use technology consti-
tute a force for change at the college and university
levels., Their expectations need to be honored or
they will flee the Latinized curriculum.

An ancillary problem is specific to my field of
teacher education in mathematics. Most teachers
teach in the manner they were taught. Most of
our prospective teachers will teach as they were
taught. If our prospective teachers do not en-
counter use of technology in their mathematics
classes, we cannot be surprised if they do not use
technology in their teaching at the school level.
Prospective teachers need regular, recurring en-
counters with technology in doing mathematics.
We do not have enough time available in methods
course work to make it happen without the con-
structive help of mathematics instructors. They
need good models of use of technology in mathe-
matics teaching to serve as a foundation for teach-

ing.

Representations and Generalizations in
Mathematics. [ am speaking to the converted
or as Harvey says, "the convicted.” You know us-
ing technology changes how you do mathematics.
For example, instead of expending hours gener-
ating the graphs of a very few parametric equa-
tions with pointwise plotting, in a small amount
of time you examine several different parametric
situations. Learning and using skills has been a
labor intensive activity for our students. We have
valued having those skills under sufficient control
to allow students to operate efficiently; however,
using them to extend ideas to new situations is
remarkably difficult simply because of the nature
of the skills.

Now, those hard won skills are not so impor-
tant. We can examine many different but related
examples easily. Often establishing a generaliza-
tion has been difficult for a teacher because it takes
so long to build the numerous exemplifications of
an idea. Indeed, the finding of an instance may
require a single computational process that is dif-
ficult to apply even though readily understood by
a student. Generating the instance may have been
so time consuming that the point is lost to the
point of interfering with the cognitive processing
required to form the generalization.




Our curriculum development efforts with
C?PC and in the seventh and eighth grade
level with the Approaching Algebra Numerically
(AAN) project convince us that it is easy with the
use of technology to build ability to generalize with
students. They readily construct many instances.
A numerical or graphical problem solving base is
accessible to all students. They can extend ideas.
In AAN, such a numerical problem solving base
generated with the use of scientific calculators is
used with good success to establish the idea of
variable, a concept domain critical to understand-
ing basic algebra. In C? PC, examination of many
different instances allows students to fix the effects
of changes in parameters in their thinking. Stu-
dents discover and generalize ideas such as phase
shift and amplitude change from graphs often be-
fore the instructor formally focuses their attention
on the key idea. Transformations such as stretch-
ing, shrinking, translation and reflection are read-
ily associated with shifts in parameters.

Teaching methodology changes as a result.
Instructors find, according to our observations and
the reports of teachers, that they focus on different
aspects of mathematics. They are able to high-
light making generalizations, problem solving and
mathematical modeling.

Teachers report an ability to focus on other
features of mathematics. We have given mathe-
matics short shrift because of a narrow concentra-
tion on computational skills. Our C? PC teachers
report that they are able to focus on communi-
cation in mathematics to a much greater extent.
Learning to read mathematics has become more
important in their classrooms. They think situa-
tional aspects of the technology generated graphs
produces more talk about problems and represen-
tations resulting in sharpened ability to commu-
nicate mathematics. As teachers deal with the
best ways to use the technology they place a pre-
mium on classroom and laboratory arrangements
and management processes that extend the con-
versational, communicative aspects of dealing with
the mathematics. We are pleased that teachers are
making ventures and experiments to test different
methodologies than they have used in previous,
technology-free instruction.

Teachers find the ready capability to produce
equivalent graphs of a problem situation with the
modifications resulting from choices of viewing
rectangles and other technology induced variants
yields an interest and focus on representations. A
natural premium arises in contrasting different al-
gebraic and geometric representations of the same

functional relationships. This premium on repre-
sentations builds mathematical modeling capabil-
ities in the problem solving tool kit of students.

In summary relative to teaching, use of tech-
nology appears to force some changes in pedagogi-
cal orientation. A common pitfall to the noviate in
using technology is to apply blindly techniques of
didactic rule-giving that are inconsistent with the
experimental, exploratory possibilities inherent in
the technology. Owur experience indicates, how-
ever, that many instructors respond to the capa-
bilities produced by technology to change teaching
methodology and to value different, more power-
ful mathematical behaviors as outcomes of their
instruction.

Concluding Statement

We can Latinize mathematics at the univer-
sity level or we can take advantage of technology.
There is powerful impetus to change and, cur-
rently, strong pockets of opposition to what 1 trust
is a natural evolution in curriculum and method-
ology. It is easy to forget that the examples we
use and depend on in instruction via textbooks,
blackboards and paper-and-pencil activities have
evolved over generations. The mathematics com-
munity has a collective base of traditions in in-
struction of techniques and methods that serves
to guide what we do. We are bound to make some
mistakes in implementing technology due to hav-
ing little such collective experience to guide prob-
lem selection and teaching methodology.

Curricular position statements such as To-
ward a Lean and Lively Calculus (1986) and Cal-
culus for a New Ceniury (1987) paint a picture
of an undergraduate curriculum that does not fit
present realities. Mathematies is more widely used
and is applied in a variety of fields seldom rep-
resented in current instruction. Present realities
include technological advances that should affect
content selection and sequencing. This conference
demonstrates the wide variety of ways in which the
use of technology makes us rethink curriculum and

instruction at the undergraduate level.

The NCTM’s recommendations Curriculum
and Evaluation Slandards for School Mathemal-
ics (1989) prescribe a future for school mathemat-
ics consistent with the intents of Toward a Lean
and Lively Calculus (1986) and Caleulus for a New
Century (1988). Themes of problem solving, com-
munication in mathematics, and higher order cog-
nitive functioning point toward products of the
schools that should be quite different than those




students who are currently the targets of instrue-
tion at the undergraduate level. We must take
advantage of the impetus for change in order to
be ready for such students.
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