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One of my favorite cartoons shows a student
sitting at a table with four calculators on it. A
teacher, while bending over the table and touch-
ing one of the calculators, is saying “If you have
four calculators and I take one away, how many
are left?™ I like this cartoon for two reasons. One
is that for many years we have been urging teach-
ers to use physically manipulable materials to help
students to learn and to do mathematics. When
thought of in this way, the teacher in the cartoon is
effectively using the calculators as manipulatives
to help the student to understand and solve the
open number sentence 4 — 1 = 7. This cartoon
also represents to me the belief held by some per-
sons that this is the only way to use calculators
and computers in mathematics instruction, while
at the same time the cartoon shows how ridiculous
and ineffective the use of electromic techniologies
will be if we permit students to use them only for
trivial, sometimes unimportant, tasks.

At present, we do not know a great deal about
the effective use of electronic technologies in math-
ematics. But I opine that as we better define effec-
tive ways to use present and emerging electronic
technologies in mathematics instruction, we will
discover that we must also change the ways in
which we teach (i.e., change our pedagogy) and
how and what we test. This is probably especially
true in mathematics courses taught at the college-
level because thus far we have used calculators and
computers mostly in relatively trivial ways when
compared to the mathematics we are teaching and
expect students to learn. In this paper I will dis-
cuss some of the ways in which pedagogy and test-
ing change when technologies are used in college-
level mathematics courses. However, before I do
this I will discuss the issue of effective use of calcu-
lators and computers in mathematics instruction.

Their Minds Will Turn to Mush!

At present at the school (ie., pre-college)
level, the greatest concern about the use of

! This paper is a revision of a paper with the
same title given at the First Annual Qhio State
University Conference on Technology in Collegiate
Mathematics.
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electronic technologies in mathematics seems to
be about the use of caleulators. This may be
true because calculators are largely regarded as
tools (Taylor, 1980) while computers are regarded
either as a technology that engages students in
computer-assisted instruction or that students
program to solve mathematics problems. The
present concern about the use of calculators will
undoubtedly broaden to include computers as the
use of computers as tools increases.

At the school level, a cry often heard from
parents, teachers, and school administrators is
that if students use calculators for mathematics,
they will become dependent upon them and, as a
result, will become even more mathematically il-
literate than students are presently; that is, their
[mathematical] minds will turn to mush! Thus,
these parents, teachers, and school administrators
argue that students should not be permitted to
use caleulators while learning mathematics., As
an aside I would comment that these same persons
seem unconcerned that their children and students
use calculators in almost every other school sub-
ject where they are appropriate including science.
But this duality isn't new:; when [ was a student
it was expected that I would use a slide rule in
physics and chemistry courses but not in mathe-
matics courses (see Harvey, 1989a).

The argument that student’ minds will turn
to mush is, at best, a weak one. Hembree and
Dessart (1986) identified 79 studies of the effects
on students of using calculators in learning mathe-
matics in Grades K — 12. From their meta-analysis
of the data from these studies of calculator use,
they concluded that:

1. In Grades K — 12 (except Grade 4) students
who used calculators in concert with tra-
ditional instruction maintained their paper-
and-pencil skills without apparent harm.

2. The use of calculators in testing produced
much higher basic operation and problem-
solving achievement scores than did the use
of paper-and-pencil alone. This conclusion
held across both grade and ability levels. The
overall better performance of calculator using
students on problem solving appeared to be a




result of improved computation and process
selection.

3. Students who used calculators had better at-
titudes toward mathematics and better self-
concepts in mathematics than did students
who had not used calculators. This conclu-
sion held across both grade and ability levels.

(p. 96)

The 1986 National Assessment of Educational
Progress (NAEP) mathematics assessment admin-
istered test to students in Grades 3, 7, and 11; at
each grade level, one sample of students was per-
mitted to use calculators while another sample was
not. At each grade level, the students permitted to
use caleulators outperformed those who were not
(p < .05). In addition, data from that assessment
revealed that Grade 11 students in the upper quar-
tile of mathematics performance used calculators
considerably more in five areas than did students
in the lower quartile of mathematics achievement
(Dossey, Mullis, Lindquist, & Chambers, 1088, pp.
80-81).

This argument also reveals the view of math-
ematics and, as a result, the mathematics curricu-
lum that the persons making the argument would
seem to have: mathematics is a fixed collection
of mechanical skills and techniques. At both the
school and college levels it is recognized that me-
chanical skills and techniques may be important
when trying to solve problems but that knowledge
of them is only a small component of mathemat-
ical knowledge, intuition, maturity, and problem-
solving ability (The College Board, 1983a, 1985;
Commission on Standards for School Mathemat-
ics, 1987; Douglas, 1986; National Council of
Teachers of Mathematics, 1980; Steen, 1987a).
When, however, the skill-and-technique view of
mathematics is adopted, then indeed, calculators
should not be used by studenis because their use
takes away the need to learn what is then the sub-
stance of mathematics. About the only thing that
unites those who see mathematics as a collection
of mechanical skills and techniques and those who
do not is that both groups are agreed that they
want students to learn mathematics.

Human history could be a litany of the tools
(i.e., technologies) on which we have become de-
pendent. Physically, these technologies include
fire, elothing, wheels, steam and internal combus-
tion engines, locomotives, automohiles, and vac-
uum cleaners. Mathematically, we rely on the the-
orems proved and the problems solved throughout
history; we regard the mathematics that has been

generated throughout the ages not only as knowl-
edge but as a set of tools that we should not aveid
but should take and use whenever we need them.
Electronic technologies and, in particular, calcu-
lators need simply to be regarded as useful tools,
and as tools, we need to know when to use them
effectively and when not to use them. And like
all other tools, we need to know when electronic
technologies malfunction, and, when they fail, to
have them repaired or replace them.

Finally, even though I have discussed here the
arguments advanced by persons interested in the
mathematics education of school students, I want
to remind college and university mathematics fac-
ulty that they may be making the same arguments.
I know that I have heard college and university
faculty making the argument that graphics calcu-
lators or computer algebra systems ? should not
be used in collegiate-level mathematics courses be-
cause students will not acquire needed skills and
technigues. To some it seems unthinkable that
sketching the graph of the function is not the
final, mentally consolidating activity associated
with computing the first and second derivatives
of a function, finding the critical points using the
first derivative, and checking those points in the
second derivative, or that students do not need to
integrate by parts the function f defined by

f(z) = z In(z).

I am sympathetic to these arguments since I do
not know how much my knowledge of integration,
for example, depends upon my skill with integra-
tion by parts or partial fractions. Continuing with
this example, I do suspect that the skills and my
practice of them did little to help me understand
the concepts of Riemann sum, partition, and in-
definite integration or the Fundamental Theorem
of Integral Calculus. My indecision only highlights
that we must carefuly determine what are effective
uses of calculators and computers in both school
and college level mathematics.

Effective Uses

Just as some argue that calculators and com-
puters should not be used at all in mathematics,
there are others who argue that any use of them
is appropriate. These advocates believe that no

2 1 shall call computer algebra systems and re-
lated systems, such as MATLARB, symbolic math-
ematics sylems.,
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matter how students use calculators or comput-
ers to learn mathematics, their mathematics ed-
ucations will be improved. One consequence of
this argument is that we should give students elec-
tronic technologies and encourage them to devise
their own ways of using them. The result of fol-
lowing this line or reasoning would be, 1 believe,
a proliferation of the poor practices we already
see around us. [ have, for example, seen people
using caleculators to find the sum or product of
two one-digit numbers. [ have also encountered
persons who seem to believe that electronic tech-
nologies can solve any problem if they “push the
buttons” long enough; some of these were my stu-
dents who, on tests, spent a lot of time making
computations and not enough time in analyzing
the problem they have been given to solve or in
devising a sensible plan for solving the problem.

As | have stated, we know little about the
effective uses of electronic technologies in math-
ematics and especially, in college mathematics
courses. We can best judge the effectiveness of
uses by specifying what outcomes we expect. [
wholeheartedly subseribe to the outcomes sought
by the NOTM’s Commission on Standards for
School Mathematics {1987) and the Tulane Con-
ference (Douglas, 1986); that is, I believe that
we should seek uses that promote improved (a)
conceptual learning, (b) problem-solving perfor-
mance, (c) insight into what mathematics is and
how it is generated, (d) mathematical intuition,
and (e) attitudes and motivation. Effective uses
of calculators and computers can help us achieve
these outcomes by correctly focusing student at-
tention on higher-order learning instead of low-
level skills and techniques, and by reducing or re-
moving instruction on skills and techniques and
replacing it with instruction for those things we
seek — concepts, solved problems, insights, intu-
ition, and enthusiasm for mathematics. Here are
some examples that indicate to me my faith is well
placed.

One example is the conclusions reached by
Hembree and Dessart (1986) that were described.
There are four additional examples at the college
level.

Heid (1988) studied the effects of the use of
graphic tools and symbolic mathematics systems
on student understanding in an applied calculus
course, During the first 12 weeks of instruction
the 39 students in the treatment group used these
tools to perform routine manipulations; only dur-
ing the last three weeks was skill development

taught. The students in the experimental treat-
ment showed better understanding of the course
content and performed almost as well on a final
examination of routine skills as did a class of 100
students who had practiced the skills during the
entire 15 weeks,

During 1987-83, Kenelly (unpublished)
taught the required introductory caleulus syllabus
to students who used Hewlett Packard HP-28C
symbol manipulation caleulators. Kenelly re-
ported that the entire syllabus could be covered,
that students requested they be taught theorems
and their proofs so that they might understand
the calculator’s symbolic manipulations, and that
they were enthusiastic and highly motivated.

The effects of using MACSYMA ® were stud-
ied by Palmiter (1986). The experimental group
(n = 40) studied integration as did her two control
groups; the control groups were each comparahle
in size to the experimental group. The experimen-
tal group used MACSYMA while studying the ma-
terials; they completed their study of integration
in one-half the time required by the control groups.
Five weeks and 10 weeks after the end of the in-
structional treatment, concept and computation
tests were given, The test scores of the experi-
mental group was significantly better than those
of the control groups on all of the tests, While tak-
ing the computation tests, the experimental group
used MACSYMA; they completed the test in half
the time required by the control groups.

During the Fall Semester, 1988-89, 1 (Harvey,
1989b) taught a single section of college algebra
using Precalculus Mathematics: A Graphing Ap-
proach (Demana & Waits, 1988) and Master Gra-
pher (Waits & Demana, 1986), a graphics tool.
The vsual syllabus was covered; in addition, con-
siderable time was spent teaching students ways
of solving problems using geometric representa-
tions generated with the Master Grapher. A 25
item algebra test was given as a pre- and posttest
to this class of 27 students; there were complete
data for 25 of these students. Analysis of those
data revealed a statistically significant increase
(p < .001) in mean achievement from the pretest
to the posttest; the mean score on the pretest was
8.76 (s.d. = 2.85) while the mean score on the
posttest was 13.31 (s.d. = 3.61).

The Three Ages of Technology

Since we began to experiment with the use
of caleulators and computers in mathematics




education, there have been three technological
ages. During the first age (c. 1965-75), the pri-
mary use of computers was to teach students a pro-
gramming language (e.g., BASIC) and to encour-
age or require them to write computer programs to
solve problems. The beginning of the second age
coincided with the introduction of both hand-held
calculators and microcomputers. During this age,
from 1975 to 1985, students may still have been ex-
pected to write computer and calculator programs
but the primary activities were computer-assisted
tutorials and the uninstructed use of calculators.

Because of the ways in which calculators and
computers were used during the first two ages,
few, if any, changes in mathematics pedagogy were
needed. Since students were left to their own
devices, expected to write programs to solve the
problems outside of class, or to interact passively -
again outside of class — to computer assisted tuto-
rials. Together these two ages comprise the passive
pedagogic period. During this period mathemat-
ics teachers went along doing the same thing they
had always done in their classrooms; they used
few of these technological innovations on a regular
basis in their instruction.

The present age is one in which we are teach-
ing students to use technological tools and in
which we are actively using those same tools in
classroom instruction on a day-to-day basis. For
these reasons, 1 call this the active pedagogical
period. I am not quite certain why mathematics
teachers, and especially college mathematics fac-
ulty, have moved from a passive to an active stance
in their use of technologies.

One reason may be that we have recognized
that students may not or cannot discover the ap-
propriate uses of these tools by themselves. My
own observation of students using scientific calcu-
lators, for example, is that they need to know more
about the keys that invoke the built-in mathemat-
ical functions and parentheses.

A second reason may be that we have dis-
covered that technological tools can greatly assist
us to teach. For example, using Master Grapher
(Waits & Demana, 1986), I can quickly and eas-
ily look at the graph of a function both globally
and locally. In addition, the graphs drawn by this
graphing tool are better drawn and more accurate
than those that I can sketch.

A third, and possibly pefultimate, reason
may be that they make mathematics more en-
joyable while also teaching us new things about
mathematics that we thought we had learned and

learned well. For example, the graphing tools
(e.g., a Sharp EL - 5200) have permitted me to
explore geometrically functions that I had never
considered before like f(z) = z In(z) — sin(z)
and to see graphically that (a) f has a relative
minimum (at z =~ 0.76 ), (b) the first derivative is
zero and the second derivative is positive at this
point, and (c) that f has an infinite set of inflec-
tion points. (The graph of f"(z) = 1/z + sin(z)
shows more clearly that f has that infinite set of
inflection points than does the graph of f.) Fig-
ure 1 shows that graphs of f, f', and f”.

Figure 1. Graphs of f,f', and f" where f(z) =
rlnzr —sinz

Fourth, it may be because these tools have
become easier to use and to learn to use and
have capabilities that were previously not gener-
ally available. One can learn to graph functions
using a graphing calculator in less than an hour;
at that point, one is ready to begin learning how
these calculators can be effectively used in math-
ematics. Microcomputer symbolic mathematics
systems have capabilities only possessed by large,
mainframe computers 10 years ago.

What Choices Are There And What Are
the Pedagogical Consequences?

At present when considering a choice of tech-
nology tools for college-level mathematics courses,
there are three choices: programmable and
non-programmable scientific calculators, graph-
ing calculators and computer graphing tools, and
computer symbolic mathematics systems. The

L I R |

e B PHTRLF W=




changes in pedagogy that can or should occur
when these technologies are used grows as the ca-
pability of the tool increases. Thus, the changes in
pedagogy that I will discuss when using scientific
caleulators will also apply to graphing tools and
to symbolic mathematics systems.

Scienlific Caleulators. Among the three
tools, scientific calculators are the most widely ac-
cepted and the most widely used; a recent survey
of 477 college faculty at 183 colleges showed that
this is true (Kupin & Whittington, 1988). Table 1
shows the number of respondents who teach each
of seven courses and the percent of those who make
some use of calculators in those courses.

Scientific calculators have been available
longer and are relatively inexpensive (varying in
price from about 512 to about 360). When
first introduced some college faculty quickly re-
quired or permitted their use while other fac-
ulty barred them from their mathematics classes,
However, scientific calculators—programmable and
nonprogrammable-are now familiar equipment in
many precalculus and calculus classes. For exam-
ple, at the University of Wisconsin-Madision we
include in our timetable a statement that students
taking introductory caleulus courses are expected
to have a scientific calculator. Some of the uses of
scientific calculators in mathematics are these:

1. to facilitiate numerical estimation, approxi-
mation, and computation (including numeri-
cal differentiation and integration),

2. to make tables so as to search for patterns,
to help students sketch graphs, and so forth,
and

3. to check results (i.e., answers).

Table 1

Calculator-Use in College Level Courses

Courses Number of Percent of Hes-
Respondents  pondents Indicat-
ing “Some Use”
College Algebra 212 7%
Precalculus 274 B3%
Statistics
Non-Caleulus 206 94%
Calculus 58 97T%
Calculus 426 B4%
Discrete Math 140 62%
Linear Algebra 165 81%

Adapted from Kupin & Whittington (1988).

One respondent to the survey conducted by Kupin
and Whittington {1988a) may have best summed
it up by saying “any topic with caleulator-friendly
algorithms.”

If we actively use scientific caleulators, the
pedagogic implications of these uses of calculators
would seem to be these.

e We must let students use their calculators as
often as they like. This means, for example,
that we can no longer say to students, “You
can use your calculators while you solve this
set of problems (e.g., you homework) but you
cannot use them while you solve that set of
problems (e.g., the test problems).”

o We need to describe and discuss with students
the situations in which calculator use is and
is not apprepriate. For example, an appropri-
ate use would be the development of a table
to graph f(r) = r In{x) — sin(z) in the in-
terval (0, 5] while an inappropriate use would
be to use a numerical integration program to
find the definite integral of f(z) = 1/z* in
the interval [1,5]. We presently practice this
policy with the skills and techniques we teach;
thus we simply must extend our policy to in-
clude calculators (and computers). If we reg-
ularly use a tool in preparing for and teach-
ing our courses, then we will be better able to
easily describe appropriate and inappropriate
uses.

o We need explicitly to show students the kind
of thinking and planning needed before calcu-
lator or compuler use begins and afier il is
concluded just as we do presenily with skills
and technigues. By extending this kind of in-
struction to calculator and computer use we
will have additional opportunities to (a) teach
problem-solving heuristics and strategies, (b)
help students better to understand underly-
ing concepls and principles, (¢) give students
instruction on estimating and approximating
answers, and (d) help students better discern
correct from incorrect results.

e We need consistently to use calculators, both
in and outside of the classroom, to show siu-
dents thal calculator and compuler use in
mathemalics is appropriaie, importani, and
acceptable. 1 believe that many college stu-
dents continue to believe that it is acceptable
to use a calculator in, say, physics courses
but that its use in mathematics courses is
unacceptable just as I believed as a student
that slide rules were unacceptable. This belief




makes students, in a way, caleulator and com-
puter phobic and so, afraid that their knowl-
edge of mathematics will not grow appropri-
ately or be adequate if they use these tools
while learning ma‘hematics. In other words,
they suffer from a sort of self-inflicted “My
mind will turn to mush! argument.

Graphing Tools and Symbolic Mathematics
Systems. The use of graphing tools and symbalic
mathematics systeme is newer, more arguable, and
less well explored. In a great part of the un-
dergraduate mathematies curriculum these tools
could change what students learn, how they learn
it, and how we teach it to them. Many argue
that if we fail to include the use of graphing tools
and symbolic mathematics systems into the way
we teach mathematics the result may be a “La-
tinized” mathematics curriculum that is studied
only by those preparing to be mathematicians
(i.e., mathematics scholars); these students would
essentially be studying a dead language as far
as the rest of the world, including most of the
academic world, is concerned [Osborne, of these
Proceedings; Steen, 1987h) The advantages of us-
ing calculators and computers in parts of the col-
lege mathematics curriculum have been discussed
(Douglas, 1986, pp. vii-xxi; NCTM, 1988, Steen,
1987¢; Tucker, 1987; Zorn, 1986; Zorn, 1987).
Others have expressed concern or have urged cau-
tion in changing the undergraduate mathemat-
ies curriculum (Buck, 1987; Gillman, 1987; Stein,
1986). We need to proceed carefully, though ex-
peditiously, in incorporating these tools. Here are
some suggestions.

o We need to analyze carefully the conient that
we presently Teach and that we would hike to
teach. That is, we need to carefully reexam-
ine what it is that we want students to learn
and to compare that to what we presently
teach them and to what we think they can
learn. Most of the discussions about the in-
adequacies of present caleulus courses (Dou-
glas, 1988; Steen, 1987a) have identified that
our present courses teach too many skills and
techniques and too few concepts and too lit-
tle problem solving. My colleagues at the
University of Wisconsin-Madison and at the
other UW-System institutions acknowledge
this is true and that we would like to improve
our teaching of concepts and problem solv-
ing. However, we also feel that our present
calculus courses are very challenging for the
majority of our students. The number of
students who do not successfully complete

introductory calculus courses on our cam-
puses is about 25% (University of Wisconsin-
Madison, Department of Mathematics Calcu-
lus Committee, unpublished; Harold Schlais,
personal communication); these rates are con-
sistent with other estimates (Douglas, 1986,
p. xvii). Only a careful analysis of what
it is essential for students to learn coupled
with an analysis of (a) what we think stu-
dents can learn and when they can learn it
and (b) which students we want to include
and exclude from our mathematics courses
will tell us how to improve our undergrad-
uate mathematics curricula. These decisions
need to be made locally since they depend
upon many factors including the size and ad-
missions requirements of the institution, the
qualifications and intended majors of the in-
stitution’s students, the availability of calcu-
lators, computers, and soltware, the techno-
logical literacy of faculty (and teaching assis-
tants), and the willingness and ability of fac-
ulty {and teaching assistants), and the will-
ingness and ability of faculiy and the institu-
tion's administration to change.

Onece the content of the mathematics curricu-
lum has been eramined, we need to defermine
the ways that particular tools can help us {o
teach that content. Undoubtedly, this step is
not one that occurs after all of the decisions
have been reached about the content of the
curriculum, but T have placed it second in my
list to emphasize my belief that the choice
of appropriate mathematical content is most
important (Harvey, 1989a).

We must notl cling to our presenl ways of
teaching. There are at least two things that
must change; both are related to my earlier
observation that to be most effective our in-
struction will need to include regular use of
the tools we select.

First, it seems we will need to give up our roles
as expositors, leaders, and “the sources of
knowledge” and become instead resource per-
sons to and, on occasion, co-learners with our
students. Let me describe a typical session
in my algebra class using Precalculus Math-
emalics: A Graphing Approach (Demana &
Waits, 1988) and Master Grapher (Waits &
Demana, 1986). My classroom is equipped
with a computer, screen, and color projector.
During most class sessions [ usually talk for
a few minutes about the algebraic techniques
that the students are learning and the ways in



which they can and should be used; a major-
ity of the class time is spent engaged in prob-
lem solving using both algebraic and geomet-
ric techniques. During problem solving I basi-
cally ask questions, make suggestions, and op-
erate the computer while students supply me
with the problems to be solved, the questions
to be answered, the procedures to be used,
and most of the answers. High school math-
ematics teachers who are participating in the
1988-89 field test of Precalculus Mathemalics
reported that their classes proceed in about
the same way (Bert Waits, personal commu-
nication).

Second, we must be willing to rearrange the
order in which topic and ideas are presented.
Let me relate two experiences here. One
comes from my present college algebra course,
the other from John Kenelly's experiences in
teaching calculus with the Hewlett Packard
HP-28C calculators.

A typical way of teaching college algebra stu-
dents to find the real zeros of a polynomial
function f of degree three or higher is:

1. Check to see if f has a zero at 0,1, or
—1 by directly computing the value of
f at those points.

2.  Estimate the number of real zeros using
Descartes’ Rule of Signs.

3. Use the Rational Root Theorem to make
a list of the possible rational zeros of f.

4. If Step 2 has shown there are no positive
or no negative real zeros, delete the ap-
propriate entries from the list developed
in Step 3.

Check the values remaining in the list by
directly computing their images under f
to see if they are zero.

6. Use the information gained in the first
five steps to factor f as completely as
possible, and in most cases, stop whether
or not the polynomial has been com-
pletely factored.

When using a graphing tool polynomials of

degree three or higher may not be factored at

all. Instead a complete graph (i.e., one that
shows the global behavior and as much of the
local behavior of the function as possible) is
drawn; then, using this graph and successive
graphs of local parts of the function, approx-
imations to all of the zeroes of the function

are obtained. However, since it remains im-

portant that students find exact solutions, in

[44]

this case rational zeros, to some problems the
next procedure also is used. Steps 1,2, and 3
of the typical method outlined previously are
followed. Using the information cobtained, a
graph of the function is drawn using a graph-
ing tool so that a portion of the domain that
contains all of the remaining possible rational
zeros is shown. The graph is inspected, and
more of the rational zero candidates are elim-
inated. The remaining candidates are tested
by directly computing the value of f at those
points. 1f, at that point, the irrational real
zeros of f are desired, then a complete graph
is drawn, an the irrational roots are approx-
imated.

This example points out how graphing rear-
ranges the order and the way in which alge-
braic techniques are used. Graphing has be-
come an integral part of the problem-solving
process instead of an end result of it.

John Kenelly (unpublished) reported
similar instances in which the content of the
typical calculus course was rearranged be-
cause of the use of the HP-28C in his class;
two of the instances are notable. In the first
instance he reported that for three decades
' students in his classes had been unable to
apply the chain rule to three-step problems.
When teaching the chain rule to his #P-28C
class he and his students worked a number
of chain rule problems with the sequential
differentiation key on the calculator. He re-
ported that on the examinations a number of
' students in the experimental section were
able to work three and four-step chain rule
problems successfully.

Kenelly also reported that graphing was
an important tool in his experimental calcu-
lus class. “The unit [the HP-28Cs] turned
around the way that the students locked at
graphing and the caleulus. The class started
out with the graph and used the calculus to
understand the process — not the historically
opposite direction. This was one of the most
successful uses. In fact, the students sim-
ply could not fathom that people had to use
such long and involved calculations of deriva-
tives just to find the general description of
the curve.”

Using graphing {ools and symbolic mathemat-
ics systems will enable us fo emphasize the
liason between geometric, algebraic, and an-
alyiical thinking. In many instances use of




these technologies can help establish this liai-

son because this problem-solving strategy can

be applied:

1. find an appropriate algebraic or analyti-
cal representation of the problem,

2. use a graphing tool or symbolic math-
ematics system to develop a geometric
representation of the problem or to ma-
nipulate the originally derived represen-
tation,

3. obtain an (approximation to the) an-
swer from the geometric representation
or from the symbolic manipulation, and

4, prove that the answer obtained is correct
or is a good one.

We should use these lechnologies to teach stu-
dents about the global and local behavior of
systems and of the inferactions befween them.
As mathematicians we can predict the behav-
ior of specific functions and relations because
we know the class of functions to which they
belong and have in our mind’s eye a picture
of the graphs of the funtions in that class,
As a result we usually only need to experi-
ment a little to discover how particular func-
tions differ from our generic images. Stu-
dents seem not to learn very well that similar
functions have similar graphs and, sometimes,
vice versa. For example, when you show stu-
dents the funtion f(z) = z* and a graph of it
and then ask those students what, in general,
a graph of g(z) = 2z? — x4+ 3 might lock like,
they often have no idea.

Figure 2. Graphs of f(z) = 3 and g{x] =
2% — 42% 4+ 42 in the Viewing Rectangle [—10, 10]
by [—500,500]

With a graphing tool it is easy to see that
the leading term of a polynomial function
describes the behavior of the function when
|z| is large by showing students that, in an
appropriate viewing rectangle as shown in
Figure 2, the global behavior of two poly-
nomials of the same degree are quite similar.
I have no quantitative data to support this
claim, but I firmly believe that the students
in my experimental college algebra section
have come to know that all quadratic poly-
nomial function are parabolas, that all third-
degree polynomial functions have graphs that
resemble that of f(z) = z*, and so forth.

At the same time a graphing tool can
help students to understand the remaining
part of the theorem from theory of equations
that I have started to recite; namely, that
when |z| is small then terms of lower de-
gree in a polynomial function begin to dic-
tate its behavior. Figure 3 shows another
graph of the function f(z)=z%—42z% +4=z.
In the interval from z =0 to =z = 2, it is
clear that the z? term no longer describes
the behavior of this function. At that point
estimating the relative sizes of z* and 4z’
shows that the latter term is larger as stu-
dents come to expect. Discoveries about the
local behavior of functions lead naturally to a
discussion of local maxima and minima and
to some knowledge of where they might be
found; as a result students should be better
able to estimate answers and to determine
correctness of their results.

Figure 3. Graphof g(z) = z? —dz? + 4z inthe
Viewing Rectangle [—5,5] by [—5,5]

47

]

T AR

T

b

Tel 0]




Study of local behavior in this way can
also lead students to understand results that
are deep and could not be taught otherwise
— at that time or place. From Figures 4,
5, 6, and 7 you see ample evidence of the
piecewise linearity of f(z) = z* — 8z + 1.
Figure 4 shows the local behavior of f: in
Figure 5, the part of the graph of the func-
tion that will be magnified for consideration
is shown in the box. Figtre 6 shows the re-
sult of the magnification; Figure 7 shows the
result of a subsequent magnification. After
students see this over and over again as they
approximate zeros, local maxima and min-
ima, and the points of intersection of curves,
they come to understand piecewise linear ap-
proximation. 3

——

N

Figure 4. Graphof f(z) =23 — 822 4 1 in the
Viewing Rectangle [—5,5] by [—12, 12]

% In my classes students came to understand
that Master Grapher plots points and then con-
nects those points with straight line segments to
produce an approximation to the graph of the
function being pictured. Thus, when spurious
lines and points appear on the scene because an
inappropriate viewing rectangle has been used or
because the function has a vertical asymptote, stu-
dents sucessfully sort out the graph of the function
from this “garbage.”

Figure §. Graph of f(z)= 3 =822 41 in the
Viewing Rectangle [—5,5] by [—12,12] with the
Zoom-in Rectangle Shown

Figure 6. Graph of f(z) = 2% —82% + 1 in the
Viewing Rectangle [0,0.25] by [—0.36, 0.36]
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Figure 7. Graphof f(z) =2 — 8z +1 inthe

Wiewing Rectangle [ﬂ.lﬂ, ﬂla] by [—0.01,0.01)
Finally, because it is easy to look at related prob-
lems, these technologies can also help us to teach
students to discover and to generalize. For exam-
ple, consider the function

flz)=a{z—b)" 4 ¢

where n is a positive integer and a,b, and ¢ are
real numbers. After beginning with the case of
a=1 and b=c=0, it is easy to consider other
values of a,b, and ¢ quickly. From this students
will generalize the amount and direction that b
translates the graph horizontally, the amount and
direction that ¢ translates the graph vertically,
the way in which e affects the overall shape of
the graph, and the rotation in space of the graph
about the r-axis when a is negative.

s Because calculators and computers are dis-
crele machines, both continuous and discrele
perspecilives musi be included.

o A parl of instruction should be devoled to
teaching students how an when fo use graph-
ing tools and symbolic mathematics syslems.
I realize I have already stated this, but I want
to repeat it here because it is especially true
for these two technologies because of their
added capabilites. The survey by Kupin and
Whittington (1988) shows that between 6%
and 42% of the respondents that let students
use calculators spent “some class time" show-
ing students how to use their calculators and

that 26% of the respondents who permitted
computer use taught or assisted their students
to use them. The amount of time spent was
not quantified. The results of this survey in-
dicates that those presently using calculators
and computers in their college-level courses
recognize that instruction on the use of these
technologies is important and possibly, neces-
sary.

e We uill need to spend time with studenis talk-
ing to and working with them while they use
graphing tools and symbolic mathematics sys-
iems. This is an obvious suggestion when the
uses of technologies are thought of as impor-
tant problem-solving strategies. It is also im-
portant during this period in time when we
know so little about effective uses of technolo-
gies and about how and how well students
will learn to use them. This kind of infor-
mation could help us to transform the college
mathematics curriculum into one that better
teaches concepts, problem solving, and appli-
cations.

As already stated, the use of calculators,
graphing tools, and symbolic mathematics sys-
tems cannot be limited to their use by teachers
or to student use in class or while doing home-
work. Effective uses of these technologies by stu-
dents will mean that they come to regard them
as tools that they use much as they presently use
pencils and paper. Thus, tests at all levels will
have to assume that students will use these tools,
and so, test makers will have to design tests with
that assumption in mind.

Testing with Calculators and Computers

Undoubtedly, the college mathematics faculty
who presently expect their students to have and to
use calculators and computers and who permit the
use of those tools on tests already recognize that
the tests they administer to their students need to
be different. Those faculty have discovered that
some of the test questions they previously gave to
their students no longer are appropriate in that (a)
a correct answer obtained by using a calculator or
computer does not reveal if the students under-
stand the underlying concept, algorithm, or tech-
nique or (b) the difficulty level of the question has
been lowered. In addition, these faculty have also
found that the use of caleulators and computers
in their courses permits them to test understand-
ings not possible when only paper and pencils were
used, that test questions may be ones that use re-
alistic data or that have good approximations or




estimates as answers, and that they have to be
careful in developing their tests to generate ques-
tions that test mathematics knowledge and not
simply students’ abilities to manipulate their cal-
culators or computers. I suspect that if this col-
lective knowledge were analyzed and synthesized,
we would have a good, possibly definitive, pic-
ture of how both test questions and tests can be
validly and reliably constructed to be calculator-
based or computer-based. Unfortunately, this is
not so; our knowledge of calculator- and computer-
based mathematics tests is presently “personal” or
“fugitive” knowledge.

In 1975 the National Advisory Committee
on Mathematics (NACOME) also recognized that
calculator use during testing would “most cer-
tainly be invalidated in ‘calculator classes™ [NA-
COME, 1975, p. 42). From about that time to
the present the National Council of Teachers of
Mathematics (NCTM) has urged that calculators
be used in teaching and learning mathematics and
in 1986 this organization recomended that “test
writers integrate the use of the calculator into their
mathematics materials at all grade levels” (Na-
tional Council of Teachers of Mathematics, 1986).

Until recently recommendations like those
made by NACOME and NCTM seem to have had
little effect at the national level. Until 1986, there
had been little experimentation with calculator- or
computer-based mathematics tests at this level.
In 1983 and 1984, the College Board’s Advanced
Placement Program permitted the use of calcu-
lators on the Advanced Placement (AP) Calculus
Examinations. During the time that caleulator use
was permitted on the AP Calculus Examinations,
the test questions were designed to be “calculator-
neutral or calculator immune;” that is, the ques-
tions were designed so that calculator use neither
enhanced or hindered a student’s opportunity to
solve the problem successfully. This is contrary
to the position I have recommended in that it en-
couraged students to use calculators while taking
their AP calculus courses but denied them an op-
portunity to use their calculators effectively on the

* The College Board Advanced Placement Ex-
aminations in Physics and in Chemistry permit
the use of scientific calculators. The National So-
ciety of Actuaries permits calculator use on its ac-
tuarial examinations. It seems likely that most of
the national examining organizations in the sci-
ences and business permit calculator use on their
tests,

test. The reasons the use of calculators on the AP
Calculus tests were discontinued were:

The MSAC [Mathematical Sciences Advi-
sory Committee] recognizes the problems
generated by the use of caleulators in a
calculator-independent situation. The dif-
ficulties caused by rapid changes in tech-
nology, the lack of equity of access to so-
phisticated calculators because of expense,
as well as administrative and security con-
cerns, are cogent reasons for suspending the
use of hand calculators on the AP Calculus
Examinations.” (Kennelly, 1989h)

The MSAC recognized that there are problems
generated when calculators are used in calculator-
independent situations. At the same meeting at
which they discontinued ecaleulator use on the AP
Calculus Examination, the Committee urged that
an emphasis be placed on designing tests that al-
low the use of calculators as aids during testing.

Symposium on Caleulators in the Standard-
tzed Tesling of Mathematics. Because of their
common interest in developing mathematics tests
requiring the use of calculators the College Board
and the MAA jointly sponsored the Symposium on
the Use of Caleulators in the Standardized Test-
ing of Mathematics in September 1986 (Kennelly,
1989a). Three recommendations from that Sym-
posium are especially relevant here.

1. Mathematics achievement tests should be
curriculum based, and no questions should be
used on them that measure only calculator
skills or techniques.

2. When addressing a particular test item, an
important skill is choosing when and when
not to use a calculator. Consequently, not all
of the questions on a calculator-based math-
ematics achievement test should require the
use of a calculator.

3. There should be no attempt to place an upper
limit on the level of sophistication that calcu-
lators used on tests should have. Any calcula-
tor capable of performing the operations and
functions required to solve the problems on a
particular examination should be allowed.

While the Symposium participants did not con-

sider or discuss the development of computer-

based tests, I believe that these recommendations
also extend to the development of those tests as
well.

The first recommendation reaffirms and ex-
tends to calculators the traditional tenet that the
mathematical objectives that are tested should
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dictate the kind of questions included on the test.
It also asserts that items intended solely to test a
student’s calculator facility should not be included
on mathematics tests. The second recommenda-
tion has several valid interpretations. One inter-
pretation is that is is not necessary to give tests
consisting only of calculator-based (or computer-
based) itemns though on occasion this may be nec-
essary because not enough calculators or comput-
ers are available to test all students at the same
time. The second recommendation can also be in-
terpreted as meaning that it is important to test
whether students know when and when not to use
a caleulator. The third recommendation may be
naive because in 1986 graphing calculators had
just been introduced, the Hewlett Packard HP-
28C had not yet appeared, and graphing tools and
symbolic mathematics systems were only begin-
ning to be explored. If tests and test questions
will have to be prepared so that, for example, any
calculator can be used then it may be that stu-
dents who have better calculators and who know
how to use them will have an advantage on some
test items. As examples let me examine the items
shown in Figure 8.

Frample 1. Determine the number of real solu-
tions of the equation

423 — 10z +17=10.

Erample 2. Find one real solution for the system

y=4—z 4323
y=-1+2z.

@lﬂﬂﬂ by Bert K. Waits & Frank D. Demana. Used by per-
mission.

Figure 8. Examples of Mathematics Items On Which Use
of Different Calculators Could Produce Inequities

Both examples are very much alike in that a graph-
ing tool makes both of them easier.

When responding to the first item, a student
using a scientific caleulator without a programmed
routine to approximate the solutions could best
solve this problem by using Descartes Rule of Signs
first to determine that there are two positive real
solutions or no positive real solutions and that
there is one negative solution. At that point the
student would need to sketch the graph of the non-
negative domain values to determine how many
positive, real solutions there are; a scientific cal-
culator could be used to develop the table of values

for that graph. On the other hand a student who
has a graphing calculator would simply develop
a complete graph of the function whose zeros are
sought and would immediately see that there is
only one real, negative solution. A student having
a Sharp EL-5200 calculator could, at that point,
press the [SOLVE] key and determine that an ap-
proximation to the zero is z ~ —2.12; so, chang-
ing this question to read “Determine a real solu-
tion of ..." would not remove the advantage held
by a student having this particular calculator.

The second example asks for an z and a y
value that satisfies both equations. Students using
scientific caleulators would need to follow the steps
presently taught: substitute the value of ¥ in the
second equation into the first equation, combine
like terms, solve 3z® — 22 — 2z 4+ 5 =0 for a value
of z using the techniques just discussed, and sub-
stitute that value into the second equation to find
the corresponding value of y. A student having a
graphing tool could graph both functions and eas-
ily determine the point of intersection using the
built-in features of that tool.

Both of these examples show that inequities
may occur during testing if students do not have
approximately the same technological tools avail-
able; the disparities might be even greater if some
students have only scientific non-programmable
calculators while others have Hewlett Packard HP-
28Cs. 1 typically ask students having graphics cal-
culators not to use that facility during tests since
other students in my class do not have those cal-
culators. T also give students take home problems
that comprise a part of their test so that they each
can have the opportunity to work these problems
using a graphing tool.

Development of Calculator-Based Tesis.
Prior to 1986 the Mathematical Association of
America’s (MAA) Committee on Placement Ex-
aminations (COPE) had been discussing the de-
velopment of calculator-based college-level place-
ment tests; in August 1986, COPE received a
grant from Texas Instruments Incorporated to the
MAA Calculator-Based Placement Test Program
(CBPTPF) Project. Development of CBPTP tests
began in October 1986. Using the present tests
of the MAA Placement Test Program as a start-
ing point, the CBPTP Project test development
panels are developing calculator-based placement
tests. About 25% of the items on the CBPTP
tests will be calculator-active; each CBPTP test
will expect students to have a scientific calcula-
tor available to them while taking that test. The
test panels have been using these definitions of a
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calculator-active test item and a calculator-based
test.

A caleulator-based [calculator-active] fest
tlem (a) is an item containing data that can
be usefully explored and manipulated using
a calculator and (b) has been designed to
facilitate active calculator use.

A calculaior-based mathematics test is one
that (a) tests mathematics objectives, (b)
has some calculator-based test items on
it, and (c) has no items on it that could
have been but are not calculator-based ex-
cept for items that are better solved using
non-calculator based techniques. (Harvey,

1989a)

The first two of the six CBPTP tests have been
developed and will be published in 1989; they
are the Calculator-Based Arithmetic and Skills
Test and the Calculator-Based Caleulus Readi-
ness Test. Two additional tests are presently be-
ing developed and will be published in 1990; they
are the Calculator-Based Basic Algebra Test and
the Calculator-Based Algebra Test. The remain-
ing two placement tests will be developed during
1989 and 1990 and will be published in 1991; these
two tests are the Calculator-Based Advanced Al-
gebra Test and the Calculator-Based Trigonome-
try Test. As they are published these tests will be
included in the MAA’s Placement Test Program
test packet. An MAA Note describing the devel-
opment of these tests and their characteristics will
be published in 1991,

The College Board has initiated development
of a new version of the Mathematics Level IT
Achievement Test that will be calculator-based
(Harvey, 1989¢). This test is presently still in the
prototype development stages. There are plans
to offer this Math II-C version of the Mathemat-
ies Level IT Achievement annually when it is com-
pleted.

Calculator-Active Test [tems. An analysis of
two of the MAA Placement Test Program tests
showed some of the items were not appropriate for
calculator-based tests for two reasons: the items
no longer tested the objectives they were intended
to test or they tested calculator facility instead of
mathematical knowledge. An analysis of the items
from the Scholastic Aptitude Tests (SAT) (College
Board, 1983b) showed that none of those items
were not appropriate for calculator-based tests
(Harvey, 1989a). The contrast between the two
sets of items is that those on placement tests tend

to test the mathematical content (i.e., achieve-
ment) of high school mathematics courses and
lower-level knowledge while the SAT items mea-
sure aptitude instead of achievement. In addition,
few of the SAT items were ones requiring much
computation and thus, were not calculator-active
when judged using a scientific calculator. So, then,
what is a calculator-active mathematics test item?
Figure 9 gives some examples of calculator-active
items drawn from among those developed for the
new MAA calculator-based placement tests; the
correct answers are marked with asterisks.

Erample 1. The approximation of (14 1/6)* cor-
rect to 4 decimal places is
(A) 1.0008 (B) 1.1667  (C) 1.8526°
(D) 2.1614 (E) 4.6667
Ezample 2. If n x n x n =63, then which of the
following is closest to n?
(A) 0.047619 (B) 3.979057° (C) 21
(D) 189 (E) 250,047

Erample 3. If a certain buffale population in-
creases by a factor of 1.1 every year, then in 15
years it inecreases by a factor of
(A) 1500  (B) 3.797*  (C) 4177

(D) 16.500 (E) 19.666
Erample 4. The sequence of number
(3/2)%,(4/3)%,(5/4)%, ..., ((n + 1)/m)?", ...
approaches
(A) 1 (B) 2.179 (C) 6.192

(D) 7.389* (E) no finite number

@195& by The Mathematical Association of America. Used
by permission.
Figure 9. Examples of Scientific Calculator-Active ltems
The first two examples in Figure 9 were de-
veloped for the Calculator-Based Arithmetic and
Skills Tests; the third and fourth items will appear
on the Calculator-Based Calculus Readiness Test.
For the intended student audience each item is one
that could not be given if students were not per-
mitted to use scientific calculator. The first two
examples test student understanding of exponen-
tiation; Example 1 also tests knowledge of order
of operations. Examples 3 and 4 are problem solv-
ing items. Example 3 requires an understanding
of exponential growth while Example 4 requires
students to discern a pattern and choose the best
answer., Each incorrect response in each item is
based upon the mathematical errors that students
might make while working problems like these. A
description of the errors associated with Example
2 shows what this means.




A. The student reads the problem as 3n = 63

and solves that problem by dividing 3 by 63.

This is the correct answer.

The student reads the problem as 3n = 63

and solves that problem correctly.

D. The student reads the problem as 3n = 63
and solves that problem by taking the prod-
uct of 3 and 63.

E. The student solves the problem n'/? = §3
correctly.

ow

Figure 10. Description of the Errors Students Might Make
While Solving m x n x n = 63

Development of test questions when calcula-
tor or computer use is expected requires consider-
able skill and a thorough knowledge of the tech-
nological tools that students will use. If the sug-
gestions | have made about the ways in which we
should use the technologies we choose while teach-
ing are followed, then we will be able to develop
reliable, valid tests for our students.

Conclusion

This is an exciting-and disturbing—time for
collegiate mathematics. We have an opportunity
to restructure our curriculum, to develop new ped-
agogies, and to test students more accurately if
we effectively and appropriately apply present and
emerging technologies. On the other hand be-
cause of their nature technology tools will prob-
ably cause us to reexamine carefully the ways we
teach and as a result, to abandon some of those
ways. Before the beginning of the 21%* century I
hope that college mathematics classrooms will be
more exciting places in which students are learn-
ing mathematics better than ever before-including
what each of us remembers as “the good old days”
when we were initially learning mathematics!
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