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Today's technology is dramatically changing
the way mathematics is valued and used in the
“real world”. Corresponding change that recog-
nizes how technology can be used to enhance the
teaching and learning of mathematics is needed.
The technology based approach to the teaching
and learning of mathematics described in this pa-
per was piloted for two years and field tested for
one year in The Ohio State University Calcula-
tor and Computer Precalculus ( C*PC) Project
[9]. The C?*PC teachers are using two important
technology driven instructional models. Students
participate in an interactive lecture-demonstration
instructional model in a classroom containing a
single computer. Computer laboratories and class-
rooms where students have graphing calculators
provide a setting for a guided-discovery instruc-
tional model. Teachers use a carefully prepared
sequence of questions and activities to help stu-
dents understand or discover important mathe-
matical concepts.

The C?PC project was supported in pilot by
the Ohio Board of Regents and British Petroleum
and was supported in field test by the NSF ! . Be-
sides the authors, Alan Osborne and Gregory Fo-
ley from the College of Education are part of the
C?PC project team. The C?PC approach and
textbook, College Algebra and Trigonometry, A
Graphing Approach [13] will be used in all college
algebra and trigonometry courses at Ohio State
beginning Autumn Quarter, 1989. Ohio State
has been on the leading edge of using technology
in freshman mathematics instruction for over 15

years [19].

Computer Based Graphing

The standard traditional approach uses arith-
metic and algebraic information to produce graphs
of functions and relations and to develop geomet-
ric intuition important in the study of calculus and
advanced mathematics. The C*PC approach uses
computers or graphing calculators (really pocket

Preparation of this paper was supported in part
by grants from the Ohic Board of Regents, British
Petroleum of Ohio, and NSF grant number TPE-
8751353, Conclusions and findings are those of the
authors and do not necessarily represent the views of
the funding agencies.

computers) to quickly obtain accurate graphs
to provide many more examples and further
strengthen geometric understanding and fore-
shadow the study of calculus.

The graphing techneology is under student
control. Students can choose the viewing win-
dow or rectangle in which to display a graph. The
viewing rectangle [L, R] by [B,T] is the rectan-
gular portion of the coordinate plane determined
by L<z< R and B<y<T (Figure 1). The
[—10,10] by [-10,10] viewing rectangle is called
the standard viewing rectangle.
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Figure 1. The Viewing Rectangle [L, K] by [B,T

Graphing calculators and the graphing soft-
ware Master Grapher [21] used by C?PC stu-
dents has important zoom-in and zoom-out fea-
tures. Master Grapher contains powerful function,
conic, polar, parametric, and two variable surface
graphing utilities. Versions are available for the
IBM, Apple Ile, ¢ or GS, and the Macintosh com-
puter. The graphs in this article were created us-
ing the Macintosh version of Master Grapher.

Zoom-in 15 a process of framing a small rect-
angular area within a given viewing rectangle,
making it the new viewing rectangle, and then
quickly replotting the graph in this new viewing
rectangle. This feature permits the user to cre-
ate a sequence of nested rectangles that “squeeze
down” on a key point of a graph. Zoom-in is
very useful for solving equations, systems of equa-
tions, inequalities, and for determining maximum
and minimum values of functions. The graphing
zoom-in process yields answers as accurate as any
numerical method.

Zoom-out is a process of increasing the ab-
solute value of the viewing rectangle parameters.




The zoom-out process is useful for examining lim-
iting, end behavior of functions and relations and
for determining “complete” graphs. A complete
graph is the entire graph displayed in an appropri-
ate viewing rectangle, for example, z24y? = 16 in
[-10,10] by [-10,10]; or a portion of a graph dis-
played in an appropriate viewing rectangle which
shows all of the important behavior and features
of the graph, for example, f(z)=2z*-z+15 in
[-10,10] by [—10,30]. Of course, it is possible to
create a function for which you cannot determine
one viewing rectangle that gives a complete graph.
Thus, several viewing rectangles may be needed to
describe a complete graph.

The Role of Graphing in Caleculus

Calculus textbook authors assume that stu-
dents have control of graphing. Graphs of func-
tions are often used to illustrate the definition of
limit. For example, the following excerpt taken
from a standard calculus textbook appeared right
after the definition of limit of a function.

“The function f defined by f(z) = 1 pro-
vides an illustration in which no limit exists
as z approaches 0. If z is assigned values
closer and closer to 0 (but =z # 0), f(z)
increases without bound numerically as illus-
trated by Figure 2."

Figure 2. The graph of f(:} = %

Here the author assumes that students have
enough understanding and control of the graph of
f(z) = 1 to use it to help understand the con-
cept of limit. In reality, many calculus students
are not able to produce a correct sketch of this
graph. This important subtle notion of limit is
further confounded by lack of understanding about
graphs of functions.

The same textbook uses Figure 3 to illustras-
the meaning of ‘11_[2 f(z) = L. Notice the depth 7
understanding about graphs required by this fiz-
ure. Many entering calculus students are not even
able to correctly produce the graph of a quadrati-
function.
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Figure 3. A Geometric llustration of lim f(z) = L
T—ua

The following fest item (Figure 4) appeared
on the Second International Mathematics Study
(SIMS) 12th grade test [18]. United States 12th
grade calculus students scored 29% on the pretest
and 44% on the posttest on this item. United
States precalculus students scored 22% on the
pretest and 31% on the posttest on this item, The
international posttest average score on this item
was 58%.
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Figure 4. A SIMS Test Item.

All students must acquire a better under-
standing about graphs of functions in precalcu-
lus if more students are to be successful in cal-
culus. It is our pesition that the proper use of




technology in precaleulus courses can significantly
enhance student understanding and facility with
graphing. This in turn will lead to better under-
standing of important concepts in calculus.

Changes in Mathematics as a Consequence
of Technology

The role of algebraic manipulation. Some
leaders in mathematics education call for drastic
reduction in time spent on algebraic manipula-
tion. We are convinced that the amount of time on
this topic should be reduced, but are not ready to
completely abandon algebraic manipulation. First
hand observations have convinced us that the use
of technology helps student gain new understand-
ing about and provides motivation for important
algebraic processes. Graphing gives a geometric
interpretation to algebraic procedures. We have
found that students are willing, even eager, to
perform both arithmetic and algebraic procedures
when those procedures answer questions generated
by graphs.

Example 1. Determine the real zeros, the end be-
havior, and draw a complete graph of

3 =72 =12z 4 54
flz) = .

zr—1

Solution. It can be shown that the graph of f in
Figure 5 is complete. One important connection
students need to make is that the zeros of f are
the same as the z-intercepts of the graph of f.
Because the graph is complete, we can be sure that
there are three real zeros. Zooming in around an
z-intercept to find a zero helps establish and so-
lidify this connection. There appears to be a zero
near r = —3. We can use this geometric observa-
tion to motivate students to divide the numerator
of f by #+3 or to compute f(—3). Thus, arith-
metic and algebraic ideas can be motivated by a
graph.

If we zoom in around the zero of f between 2
and 3 afew times we obtain the graph in Figure 6
and can read that 2.354 is a reasonable approxima-
tion. We say that 2.354 is a zero of f with error
at most 0.01, the distance between the horizontal
scale marks in Figure 6.

Figure 5. A Complete Graph of f(z) = r’a——?r:i_iZ_;-_tﬂ

in [—10,10] by [—40,40]

Figure 5,3 A Znonm-ln View of a Zero of
fz) = s=T 125484 5, 93 2 4] by [-0.1,0.1]

=1 L

In general, the errorin using a point (z,y) in
the viewing rectangle [L, R] by [B,T] to approx-
imate any point (a,b) in the viewing rectangle
is at most R— L for £ and T — B for y. Of
course, there are better error bounds possible by
overlaying a lattice in a viewing rectangle or by us-
ing scale marks appearing in a viewing rectangle.
We can use zoom-in to find that the other positive
gero of f is 7.645 with error at most 0.01.

The ability to quickly obtain a graph of y =
f(z) makes it very natural to discuss the geomet-
ric interpretation of solving the equation f(z) =10
or the inequality f(z) > 0. Sclving equations
and inequalities using a zoom-in procedure soon
becomes an easy geometric problem of finding = -
intercepts, or when one graph is above or below



another, or when one graph is above or below the
T -axis.

Tf we zoom out a few times we can obtain the
graph in Figure 7. Notice this graph looks very
much like the graph of y = z?. In fact, if we
overlay the graph of y = z? the two graphs will
appear coincident. This is the geometric meaning
of end behavier; the behavior of a function for
large |z|. The graph of y = z? is called an end
behavior model of the rational function f. With

" selected examples of rational functions as a guide,
students can be led to conjecture the end behavior
of a rational function. Our students quizzed us for
a way to determine, without using zoom-out, the
end behavior of such functions. This discussion led
to the introduction of the end behavior asympiole
of a rational function. Their attention was held as
we used long division to rewrite [ as follows:

_ .2 36
flz)==z —ﬁz—18+m

Our students were then able to use this form to
draw a correct rough sketch of f by replacing f
by the end behavior asymptote y = z? — 6z —
18 for values of z away from = = 1 and the
hyperbola y = EﬁlﬁT for = near 1. This algebraic
procedure and added insight was due to the ability
of students to produce large numbers of graphs in
a short period of time. We have found that we
can do more with algebraic manipulation when it
is not the foeus of a lesson.

Figure 7. A Zoom-Out View of f(z) = &::ll'm
in [—100,100] by [—4000,4000]

Establishing connections among problem
situations, algebraic representations, and
geometric representations. The easy availabil-
ity of geometric representations gives students and

teachers the opportunity to explore and exploit the
connections between algebraic and geometric rep-
resentations and makes multiple representations of
problem situations possible. Analyzing the prob-
lem situation through both algebraic and geomet-
ric representations deepens student understand-
ing about the problem situation. Instead of the
usual negative attitude about word problems, stu-
dents gain more confidence about problems with
the added technique of analyzing and solving them
graphically. Word problems seem less mysterious
and not as forrmidable with the addition of a geo-
metric representation and powerful graphic prob-
lem solving methods.

Example 2. Squares of side length 2 are removed
from a 8.5 inch by 11 inch piece of cardboard (Fig-
ure 8). A box with no top is formed by folding
along the dashed lines in Figure 8.

(a) Express the volume V of the box as a func-
tion of = .

(b) Draw a complete graph of the algebraic model
V.

(¢) Which portion of the geometric maodel
raph) in (b) represents the problem situ-
grap P P
ation.

(d) Determine x so that the box has maximum
possible volume and find this maximum vol-
ume.

Figure 8. The Box Problem
Solution.

(a) The formula V = LWH can be applied to
obtain the volume V' as a function of z. The
height is , the length is 11 — 2r . and the
width is 85 — 2z. Thus, Vi(z) = =(85 —




(b)

2z)(11 — 2x) is an algebraic represeniation of
the volume as a function of = .

A complete graph of y = V(z) = z(8.5 -
2z)(11 — 2z) is shown in Figure 9. Students
will need to experiment with different view-
ing rectangles until a complete graph is deter-
mined. Students would be expected to have
had considerable computer based experience
graphing cubic polynomials before investigat-
ing this problem.
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[-5, 10] by [-50, 80]

Figure 9.

A Complete Graph of V{J:] —]

z(8.5 — 2z)(11 — 2z)

(<)

The physical limitations inherent in remov-
ing a square of side length r implies that =
must be positive. Because the smaller side of
the rectangular piece of cardboard is 8.5, 2z
must be less than 8.5, or £ must be less than
4.25. Thus, the values of £ that make sense
in this problem situation are 0 < = < 4.25.
This means that enly the portion of the graph
in Figure 9 in the first quadrant that is above
the z-axis with z < 4.25 represents the
problem situation. Therefore, the graph in
Figure 10 is a complete graph of the problem
situafion.

[0, 4.25] by [0, 80]

Figure 10. A Complete Graph of the Box Problem
(d) Figure 9 strongly suggests that there is a max-

imum value of V of about 66 and it occurs
when z is about 1.6. We find that consid-
erable discussion is necessary for students to
readily associate the coordinates of the “max-
imum point” with a solution to this real world
“maximization” problem. First, the connec-
tion between the coordinate representation of
points (a,b) of the graph of V' and b = V(a)
must be established. That is, in (a,b), a
represents a possible side length of a removed
square and b the corresponding volume of the
resulting box only for certain values of a and
b. Such discussion helps establish the con-
nections among the graphical representation,
the algebraic representation y = V(z), and
the problem situation representation. Now, if
{(a,b) are the coordinates of the highest point,
students can see that the maximum velume
is b= V(a) and that a is the side length of
the removed square. Such connections must
be carefully developed with many examples
during the school year. Once this kind of ac-
tivity is well established, it is easy to move to
zoom-in as a procedure for determining very
accurate solutions to these types of problems.
Figure 11 illustrates the last viewing rectangle
used in a zoom-in process. The figure shows
that the volume is 66.14823 with error at
most 0.0001 and the associated value of the
side length of the removed square is 1.5854
with error at most 0.001.



[1.58, 1.59] by [66.1475, 66.1485]

Figure 11. A Zoom-In View of the Relative Maximum of
v

Example 2 illustrates how graphing can be
used by precalculus students to foreshadow the
study of caleulus. Furthermore, graphing tech-
nology removes the barriers imposed by limited
algebraic techniques available to precalculus and
caleulus students.

Problems need no longer be contrived. Real-
istic problems are accessible to students much ear-
lier in their study of mathematics through the use
of technology. Lack of familiarity or facility with
algebraic techniques need no longer be a barrier
to quality problem solving activity by students.

Example 3. A couple can afford to pay $600
per month for a 25 year home loan. What APR
(annual percentage rate) interest rate will permit
them to purchase a $65,000 home?

Solution. Let z be the monthly interest rate,
Then 12z is the APR rate. It is not difficult to
establish that = is given by [20]

o2 —300
65,000 = ﬁunl—“_:ﬂ_—.

Because there is no closed form solution to this
equation, a numerical method is required to find a
solution. In fact, a graphing based method is quite
natural. One way to solve f(z) = g(z) graphi-
cally is to simply graph y = g(z) and y = f(z)
in the same viewing rectangle and then look for
points common to both graphs (points of intersec-
tion).

Let f(z) be the lefti-hand side and g(z) the right-
hand side of the above equation. In this problem

it is particularly important to choose a reason-
able first viewing rectangle. The problem situa-
tion indicates that we need only graph f and g
in the first quadrant. {Why?) It must be estab-
lished that the y wvalues represents possible dol-
lar amounts for the loan. Thus, the maximum y
value for a viewing rectangle must be greater than
65,000, Because r is a monthly interest rate, it is
reasonable to assume r is less than 0.1 (10% per
month). Figure 12 shows complete graphs of

f(z) = 65,000 and g[x}=ﬁmﬂ;:ﬂ

in the [0,0.1] by [0,100,000] viewing rectangle.
That there is only one solution is readily appar-
ent. The graph in Figure 12 suggest = is about
0.01. Zoom-in can be used to determine that the
monthly interest rate z is 0.008503 with error less
than 0.00001 as shown in Figure 13. Thus, the de-
sired APR rate of the home loan is 10.20%.

fi(x) iﬁi,ﬂﬂﬂ

y=g(x)
"

[0, 0. II] by [0, mi}.mm

Figure 12, The graphs of f(z) = 65,000 and g(z) =
gopi=(lter""
Ed

fl:x)‘.: 65,000

3}= &(x)

r

[0.0085, 0.00851] by [64999.5, 65000.5]

Figure 13. A Zoom-In View of the Loean Problem




Graphing surfaces (functions of two wvari-
ables) is easily accessible to precalculus
and ecaleulus students when technology is
used. Obtaining graphs of surfaces by hand is
a difficult task for both student and teacher. Stu-
dents have a good bit of trouble visualizing in
three dimensions. Teachers have a hard time pro-
ducing quick, accurate graphs of functions of two
variables. The graphing software Master Grapher
used in C*PC has a powerful utility which allows
the user to obtain accurate graphs of functions
of two variables. The user can obtain the graphs
for a<z<b, c<y<d,ande<z<f,
and then choose an arbitrary point in three dimen-
sional space from which to view the graph. Once
the first graph is drawn the points are stored in
an array so that the graph can be redrawn quickly
from different views. The user can choose any
point in three dimensional space from which to
view the graph. The resolution of a graph is un-
der user control.

This three dimensional grapher allows the
user to interactively explore the behavior of sur-
faces. Local maximum and minimum values of
functions of two wvariables can be investigated
graphically. The grapher can help students deepen
understanding and intuition about functions of
two variables. It can provide a geometric repre-
sentation of multidimensional problem situations
to go along with an algebraic representation. The
connections between these two representations can
be also explored and exploited to gain better un-
derstanding about problem situations in a manner
similar to using a single variable function grapher.

First the user chooses a region of three di-
mensional space in which to draw a graph of a
function of two variables. The set {(z,y,2z) |a <
z<be<y<d e<:z<f} iscalled the viewing
boz [a,b] by [c,d] by [e, f].

Next, the user decides how to view the graph
contained in the selected viewing box. Two points
can be selected. The point at which the user places
his/her “eye” is called the wiewing poini. The
point at which the view of the eye is directed is
called the aiming poind.

Example 4. A box with no lid has volume 6 ft*.
Determine the dimensions of a box with minimum
surface area.

Solution. Let z be the width of the box and y
the length. The height A of the box is given by
h= % . If z is the surface area of the box, then

z=2hz +2hy+zy or Z=*1'§+E+Iy,
L

Because z,y, and z must be positive, we need
to investigate the graph only in the first octant.
Figure 14 gives the graph of z in the viewing
box [0,10] by [0,10] by [0,20] with aiming point
(5,5,10) and viewing point with spherical coordi-
nates with respect to the aiming point of p (dis-
tance) = 50, # (rotation) = 30°, and ¢ (eleva-
tion) = 90°.

Yy
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Aiming point (5, 5, 10%; Distance 50; Elevation ‘?ﬂb;
Hedation 309 Viewing Cube [0, 10] by [0, 10} by |0, 20]

Figure 14. The graph of z = Jf -+ ]'y—z+1.'y

Notice the graph in Figure 14 suggests the ex-
istence of a relative minimum. Master Grapher al-
lows the user to interrupt the graphing process and
read the coordinates of a point. We can use this
technique to estimate the coordinates of the lowest
point in Figure 14 to be (2.3, 2.3, 15.7). The actual
answer can be shown to be (¥/12, ¥12,3¥/144) =
(2.289...,2.280...,15.724.. ).

Motion Simulation. In an article in The Amer-
ican Mathematical Monthly, Neal Koblitz [17)] dis-
cussed four complicated real-world problems that
are not typically solved in calculus textbooks. One
problem is especially intriguing to us because it
can be simulated and studied with a parametric
equation graphing utility. Furthermore, an ele-
mentary, non-calculus geometric solution can be
obtained with a function graphing utility. The so-
lution suggested by Koblitz involves determining
a derivative lo minimize an expression and then
involves solving ¢ complicated equation ileratively
using Newlon’s method.

Example 5. You are standing on the ground at
peint B (Figure 153), a distance of 75 feet from the
bottom of a ferris wheel 20 feet in radius. Your
arm is at the same level as the bottom of the ferris
wheel. Your friend is on the ferris wheel, which
makes one revolution (counterclockwise) every 12
seconds. At the instant when she is at point A you
throw a ball to her at 60 ft/sec at an angle of 60°




above the horizontal, Take g = =32 ft/sec?, and
neglect air resistance. Find the closest distance
the ball gets to your friend ... accurate to within

% foot. [17, p. 256]
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simulate the problem situation, set tmin = 0 and
let tmax take on different values and observe the
paths of the friend and the ball. The two paths are
plotted simullaneously producing an excellent sim-
ulation of the problem situation. Figure 16 show
actual screen dumps from a Macintosh computer
of the four simulations given by tmax 1,1.5, 2,
and 3. The same results can be obtained us-
ing Master Grapher on an IBM PC or Apple 11
computer or a graphing caleulator [14]. Each sim-
ulation takes less than 5 seconds!

Figure 15. The Ferris Wheel Problem

Solution. The problem situation can be nicely
simulated using the parametric equation graphing
utility of Master Grapher or by using a graphing
calculator with a short program to graph para-
metric equations [7]. The minimization prob-
lem can also be easily solved by a non-calculus,
graphing zoom~in procedure. The ferris wheel is
placed in a rectangular coordinate system with
a diameter along the y-axis, the bottom at the
origin, and the top at the point (0,40) (Fig-
ure 15). The ferris wheel is a circle with center
C(0,20). Let t be the time in seconds the ball
is in flight, P4(t) = (z4(f),ya(t)) the position
of the friend on the ferris wheel at time #, and
Pg(t) = (zp(t), ya(t)) the position of the ball at
time t. Notice that P4(0) = A = (20,20) and
Pr(0) = B = (75,0). It is easy to show, using
only right triangle trigonometry and high school
physics, that P4(t) and Pg(t) are given by

zalt) =20 cos(%i)

yalt) = 20+ msin(%‘)

and
zp(t) = 75 — 30t

yp(t) = 30v/3t — 16¢°.

Our parametric graphing utility allows the
student to graph any relation (z(t),y(t)) defined
parametrically by specifying a ¢ interval as [tmin,
tmax], and a viewing rectangle [a,b] by [e,d]. To

(LR P | wman s 1,5 aocmedy
[0, B0) by [-00. 804 [0, 0] ey (-0, €]

[T g 2 ire = § setiedi
[0, B by L3, 634 [-22, 50| ¥y -0, 804

Figure 16. Simulations of the Ferris Wheel Problem for
fmax 1,1.5,2 and 3.

Figure 16 indicates that the two paths have a
common point. However, the values of 1 (time)
that produces the commeon point are different for
each set of parametric equations. It is really the
endpoinis of both curves that are of interest. The
solution to the problem can be found by deter-
mining a value of § that minimizes the distance
between the ball and the position of the friend on
the ferris wheel. A parametric equation graphing
utility that produces simultaneous graphs can be
used to approximate the solution using “guess and
check.” It is easily shown that a value of tmax be-
tween 2.1 and 2.3 seems to vield the minimum
distance.

The speed of computer graphing makes a
“guess and check” simulation method possible and
appropriate (some students even say “lun!") for
mathematical exploration. The next figure gives a
closer view of the solution. Each graph is drawn
in the [5,15] by [33,42] viewing rectangle. The ¢
range for the graphs are [0,2.1], [0,2.15], [0,2.2],
and [0,2.3], respectively. It is easy to see from
these graphs that the common point of the two
paths is reached at different times. These static




figures fail to do justice to the insight gained by
observing the dynamic, “real time” computer gen-
erated simulation. That is, by observing simulta-
neously the position of the ball and the friend on
the ferris wheel as ¢ (time) increases.
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Figure 17. Simulations of the Ferris Wheel Problem for
tmax 2.1,2.15,2.2, and 2.3

By estimating the distance between the end points
of the two paths, a student can quickly determine
that the minimum distance occurs when ¢ is near
2.2 seconds, and that the actual minimum dis-
tance i1s probably less that 2 feet. Notice that the
scale marks in Figure 17 are one unit in length.

The distance formula can be used to write
the distance D between Py(t) and Pg(t) as a
function of time 1.

D(t) = V(za(t) — za(t))? + (va(t) - us(1))?
= [(20 cos (%') - 75+ 30t)°

+ (20 + 20sin (%) —30v31 + 16¢%)°]}

Solving the equation involving the derivative
(D'(t).= 0) is very difficult (try it “by hand”).
However, the minimum value of the function D
can be found easily and quickly by drawing a
graph of y = D(t) and using a graphing zeom—in
process to determine the coordinates of the mini-
mum. Figure 18 gives the graph of y = D(t) for
0 <t < 3. Figure 19 is the result after several
iterations of the graphic zoom—in procedure.

[0, 31 by (0, 3]

Figure 18. The Graph of y = D{t)

[2.185420, 2.185423] by
[1.5789531730, 1,5789531 740]

Figure 19. A Zoom-In View of the Graph of y = D(t)

The coordinates (2.1854214,1.5789531736)
of the local minimum of y = D(t) can be read
from Figure 19. The error in the first coordinate
is at most 0.000001 = 10~%, the distance between
horizontal scale marks. The error in the second
coordinate is at most 10~ the distance between
vertical scale marks. Thus, the minimum distance
is 1.5789531736 feet with error at most 10-1?
feet, and occurs when t is 2.1854214 feet with
error at most 10~% seconds.

Other interesting problems can be posed and
solved using this computer simulation approach.
For example, how could the angle of elevation be
adjusted so that the ball comes within very easy
catching distance (say 6 inches)? How close to-
gether will two balls come if thrown at the same
time by two people facing each other (vary the
distance between the two people, the angles of el-
evation, and the initial velocities)?

Students are often exposed for the first time
to important topics such as parametric and polar
equations and graphing 3 dimensional surfaces in
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calculus. This makes the task of a calculus teacher
even more ominous because students must quickly
learn and apply these ideas. Little or no attention
is given to these topics in precalculus and calculus
because of the difficulties of graphing such curves
by hand. Technology permits students to quickly
determine a graph and to discover the role of a
parameter by experimentation. More realistic and
interesting problems are possible because of the
speed and power of technology and the fact that
algebraic complication is not a factor when tech-
nology is used. Important new approaches (such
as the computer simulation demonstrated in the
previous example) are possible with technology.
Students need a rich intuitive background prior to
the study of calculus and other advanced math-
ematics and science courses. Technology deepens
the level of student understanding and reduces the
time necessary to acquire such understanding.
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