Telescoping Series

We illustrate the idea behind the Telescoping Series using the following series as our example:

¥
å
n = 1 
1
n(n+1)
Each term can be decomposed into partial fractions:  
1
n(n+1)
= 1
n
- 1
n+1
.
The m-th partial sum can therefore be written as follows.

Sm = m
å
n = 1 
1
n(n+1)
= m
å
n = 1 
æ
ç
è
1
n
- 1
n+1
ö
÷
ø

= æ
ç
è
1
1
- 1
2
ö
÷
ø
+ æ
ç
è
1
2
- 1
3
ö
÷
ø
+ æ
ç
è
1
3
- 1
4
ö
÷
ø
+...+ æ
ç
è
1
m-1
- 1
m
ö
÷
ø
+ æ
ç
è
1
m
- 1
m+1
ö
÷
ø
After cancellation, we obtain  
Sm = 1- 1
m+1
Since  

lim
m® ¥ 
Sm = 1
, the series converges and has a sum 1.