Correct Answer!

By the :

f(x) = arctan(x)
x2+1
for x ³ 1 is continuous, positive and decreasing since

d
dx
æ
ç
è
arctan(x)
x2+1
ö
÷
ø
= 1-2(x)arctan(x)
( x2+1) 2
£ 1-2(p/4)
( x2+1) 2
< 0
   ( )

Since

ó
õ
¥

1 
arctan(x)
x2+1
dx = ó
õ
p/2

p/4 
u du = 1
2
æ
ç
è
æ
ç
è
p
2
ö
÷
ø
2

 
- æ
ç
è
p
4
ö
÷
ø
2

 
ö
÷
ø
converges, then by the , the series

¥
å
n = 1 
| an| = ¥
å
n = 1 
arctan(n)
n2+1
also converges. Hence, our original series, åan,.

Note that this problem can also be solved using the Direct Comparison Test and Limit Comparison Test.