Correct answer!
We use the .
For x ³ 2, the function
is continuous, positive and decreasing. () We find an antiderivative of f using
substitution u=3x-1-1 ()
|
ó õ
|
|
1
3x-1-1
|
dx = |
1
ln(3)
|
|
ó õ
|
|
du
u(u+1)
|
|
|
Expanding into partial fractions we obtain ()
|
1
ln(3)
|
|
ó õ
|
|
æ ç è
|
|
1
u
|
- |
1
u+1
|
|
ö ÷ ø
|
du = |
1
ln(3)
|
( ln(3x-1-1)-ln(3x-1)) +C |
|
We now evaluate the improper integral:
|
ó õ
|
¥
2
|
|
1
3x-1-1
|
dx = |
1
ln(3)
|
|
é ê ë
|
ln( |
3x-1-1
3x-1
|
) |
ù ú û
|
¥
2
| = | lim
b® ¥
|
|
1
ln(3)
|
é ë
| ln(1-31-x) |
ù û
|
b
2
| = |
-ln(2/3)
ln(3)
|
|
|
Since this integral converges, by the our series converges
.
Note that this problem could also be solved using