Correct answer!

We use the . For x ³ 2, the function

f(x) = 1
3x-1-1
is continuous, positive and decreasing. () We find an antiderivative of f using substitution u=3x-1-1 ()

ó
õ
1
3x-1-1
dx = 1
ln(3)
ó
õ
du
u(u+1)

Expanding into partial fractions we obtain ()

1
ln(3)
ó
õ
æ
ç
è
1
u
- 1
u+1
ö
÷
ø
du = 1
ln(3)
( ln(3x-1-1)-ln(3x-1)) +C
We now evaluate the improper integral:

ó
õ
¥

2 
1
3x-1-1
dx = 1
ln(3)
é
ê
ë
ln( 3x-1-1
3x-1
) ù
ú
û
¥

2 

  =  
 

lim
b® ¥ 
1
ln(3)
é
ë
ln(1-31-x) ù
û
b

2 

  =  
 
-ln(2/3)
ln(3)
Since this integral converges, by the our series converges .

Note that this problem could also be solved using