Solution of Problem 2

The series  
¥
å
n = 2 
(-1)n
ln(n)
  is an example of an alternating series  
¥
å
n = 1 
(-1)nbn

with bn = 1/ln(n). We verify that the three conditions of the hold:

1
ln(n)
³ 0  for  all  n

1
ln(n+1)
£ 1
ln(n)
  for  all  n
(since ln(n) is positive and increasing for n ³ 2, its reciprocal is decreasing)


lim
n® ¥ 
1
ln(n)
= 0
(since

lim
n® ¥ 
ln(n) = ¥
)
Consequently, the series  
¥
å
n = 2 
an = ¥
å
n = 2 
(-1)n
ln(n)
 converges.

To determine whether the convergence is ,
we consider the series
¥
å
n = 2 
| an| = ¥
å
n = 2 
1
ln(n)

We can use either the or the ,
comparing our series to
¥
å
n = 2 
1
n

Using the , it follows that since [1/ln(n)] ³ [1/n] ³ 0, (which follows from n ³ ln(n))
the divergence of the harmonic series
¥
å
n = 2 
1
n
(i.e. a with p=1),
implies the divergence of
¥
å
n = 2 
1
ln(n)
and hence, conditional convergence of the original series.