© 2000−2019  P. BogackiFinding a basis of the space spanned by the setv. 1.25 
 PROBLEM

Given the set

S = {
1
0
0
0
 , 
0
1
1
0
 , 
0
0
0
1
}
of vectors in the vector space R4, find a basis for span S.

 SOLUTION

 Step 1: Set up a homogeneous system of equations

The set S = {v1, v2, v3} of vectors in R4 is linearly independent if the only solution of

(*)    c1v1 + c2v2 + c3v3 = 0

is c1, c2, c3 = 0.

In this case, the set S forms a basis for span S.

Otherwise (i.e., if a solution with at least some nonzero values exists), S is linearly dependent.

If this is the case, a subset of S can be found that forms a basis for span S.

With our vectors v1, v2, v3, (*) becomes:

c1
1
0
0
0
 + c2
0
1
1
0
 + c3
0
0
0
1
 = 
0
0
0
0

Rearranging the left hand side yields

1 c1 +0 c2 +0 c3
0 c1 +1 c2 +0 c3
0 c1 +1 c2 +0 c3
0 c1 +0 c2 +1 c3
 = 
0
0
0
0

The matrix equation above is equivalent to the following homogeneous system of equations

(**)    
1 c1 +0 c2 +0 c3=0
0 c1 +1 c2 +0 c3=0
0 c1 +1 c2 +0 c3=0
0 c1 +0 c2 +1 c3=0

 Step 2: Transform the coefficient matrix of the system to the reduced row echelon form  (Hide details)

We now transform the coefficient matrix of the homogeneous system above to the reduced row echelon form to determine whether the system has

Row
Operation
1:
  
 1   0   0 
 0   1   0 
 0   1   0 
 0   0   1 
add -1 times the 2nd row to the 3rd row
 1   0   0 
 0   1   0 
 0   0   0 
 0   0   1 
Row
Operation
2:
  
 1   0   0 
 0   1   0 
 0   0   0 
 0   0   1 
interchange the 3rd row and the 4th row
 1   0   0 
 0   1   0 
 0   0   1 
 0   0   0 
 Step 3: Interpret the reduced row echelon form

The reduced row echelon form of the coefficient matrix of the homogeneous system (**) is

 1   0   0 
 0   1   0 
 0   0   1 
 0   0   0 

which corresponds to the system

1 c1  =0
 1 c2 =0
  1 c3=0
  0=0

Since each column contains a leading entry (highlighted in yellow), then the system has only the trivial solution, so that the only solution of (*) is c1, c2, c3 = 0.

Therefore the set S = {v1, v2, v3} is linearly independent.

Consequently, the set S forms a basis for span S.

 Comments


This concludes the solution of the problem. Do you want to
  • solve another problem of the same type, or
  • go to the main Toolkit page?