
ODU Technical Report No. 2002-02

Michael Wagner1 · Jaroslaw Meller2 · Ron Elber3

Large-Scale Linear Programming Techniques for
the Design of Protein Folding Potentials

February 5, 2002

Abstract. We present large-scale optimization techniques to model the energy function that
underlies the folding process of proteins. Linear Programming is used to identify parameters in
the energy function model, the objective being that the model predict the structure of known
proteins correctly. Such trained functions can then be used either for ab-initio prediction or
for recognition of unknown structures. In order to obtain good energy models we need to be
able to solve dense Linear Programming Problems with tens (possibly hundreds) of millions of
constraints in a few hundred parameters, which we achieve by tailoring and parallelizing the
interior-point code PCx.

Key words. protein folding, interior-point algorithm, PCx, Linear Program-
ming, linear feasibility, parallel processing

1. Introduction

The recent unveiling of the human genome marked the transition in the bio-
logical sciences towards the post-genomic era, in which the understanding of
protein structure and function becomes a crucial extension of the sequencing
efforts. Despite recent progress in high throughput techniques, the experimental
determination of protein structure remains a bottleneck in structural genomics.
This poses a challenge and an opportunity for computational approaches to
complement and facilitate experimental methods.

The protein folding problem consists of predicting the three-dimensional
structure of a protein from its amino acid sequence. The methodology and mod-
eling aspects of protein folding have been vastly discussed in the literature (for
excellent and up-to-date brief surveys of methods as well as their limitations,
see [3] and [9]). In order to characterize the existing computational approaches
to this problem one may distinguish two underlying principles.

The so-called ab-initio protein folding simulations attempt to reproduce the
actual physical folding process using the thermodynamical hypothesis, first in-
troduced by Anfinsen [2]. The unique three-dimensional structure of a protein

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529–0077.
e-mail: mwagner@odu.edu

Pediatric Informatics, Children’s Hospital Medical Center, University of Cincinnati, Cincin-
nati, OH 45229–3039. e-mail: jmeller@chmcc.org

Department of Computer Science, Cornell University, Ithaca, NY 14853–7501. e-mail:
ron@cs.cornell.edu



2 Michael Wagner et al.

is postulated to correspond to a global minimum of the free energy function.
Thus, the search for the native conformation entails the solution of a global
optimization problem.

The protein recognition approach, in turn, relies on the fact that a large
number of protein folds are already determined. Given an appropriate scoring
function, which can be thought of as a simplified folding potential, these methods
find the “best” template from the library of known folds. In other words, the
search for the native conformation is restricted to the set of known structures, as
opposed to an expensive search in the space of all possible conformations. The
scoring functions for protein recognition can be based on amino acid sequence
similarity or they may incorporate measures of sequence to structure fitness. The
latter approach, known as threading, allows to find distant homologs that share
the same fold without detectable sequence similarity [5].

In both ab-initio folding and protein recognition we are faced with the prob-
lem of finding (designing) an appropriate expression for the free energy or scoring
function, respectively. While optimization tools are certainly crucial for finding
the native conformation, they also play an important role in the modeling stage.
This paper introduces new, tailored optimization tools for the design and evalu-
ation of folding potentials with superior prediction and recognition capabilities.

The energy functions we consider here depend linearly on parameters. As
discussed in [14], the linear dependence of the potential functions on their pa-
rameters is not a major restriction. Any nonlinear function can be expanded or
at least approximated as a linear combination of basis functions. The challenge
is to find a set of basis functions of small cardinality that captures most of the
intrinsic complexity of the true energy function and thus make for a reasonable
model. The tools we present here allow us to evaluate the power of different mod-
eling approaches (basis functions), so that over time we expect these to become
increasingly more sophisticated and capture most of the intrinsic complexity of
the true energy function.

The requirement of perfect recognition of known structures results in a linear
feasibility problem (pioneered by Mairov and Crippen [11]), which we solve us-
ing Linear Programming techniques. We show that our large-scale tools, which
allow for the solution of systems with hundreds of millions of constraints, result
in significant improvements in the quality of potentials. We also demonstrate
how solving these very large Linear Programming problems in conjunction with
the recently proposed “Maximum Feasibility” heuristic [15] may be used to eval-
uate different functional forms. Our ultimate goal is an “optimal” energy model
which balances complexity and accuracy, while avoiding the dangers of over- and
underfitting.

The structure of this paper is as follows: In Sections 2 and 3 we present
the parameter identification problem and a Linear Programming solution to
it, respectively. Section 4 describes preliminary computational results and their
biological interpretation for several commonly used models. We conclude with
an assessment of the power and usefulness of our tools and by pointing to future
research directions.



pPCx for Protein Folding 3

2. Potential Function Modeling for Protein Folding

2.1. Designing the Functional Form of the Potential Model

Proteins are linear polymers composed of a sequence of amino acid residues that
are connected by peptide bonds (creating the protein “backbone”). There are
20 different amino acids that are characterized by chemically unique side chains
(containing from one to up to about 20 atoms) that hang off the backbone chain.
Protein molecules consist of several tens to several thousands of amino acids and
thus between a few hundred to tens of thousands of atoms.

Protein structure is often represented in terms of simplified, reduced models
that speed up computation. For example, the commonly used contact model
represents each amino acid by just one point in IR3, which defines the approxi-
mate location of an amino acid. The overall shape of the protein is characterized
in terms of contacts between closely packed amino acid residues. Such contact
models allow us to capture the packing of hydrophobic residues that are buried
in the core of the protein and contribute to the stability of the structure.

In the present work we consider energy functions that employ reduced, con-
tact models of protein structure. We will use the terms structure, fold, or con-
formation to mean the three-dimensional structure of the protein as defined by
a set of coordinates of the geometric centers of the amino acids side chains. Also,
the terms side chains (centers), amino acids, and residues are meant to be syn-
onymous. Finally, following our earlier discussion, we will use the terms energy
function, scoring function and potential function interchangeably.

We will denote our models of the potential function by E, and we will write it
as a function of a sequence of amino acids s and a three-dimensional structure (a
triplet of coordinates) x. The energy models considered here may be expressed
in terms of functions ϕi(s, x):

Ey(s, x) = 〈Φ(s, x), y〉,
where y is a vector of parameters that are to be determined, Φ = (ϕ1, ϕ2, . . . , ϕn),
and 〈·, ·〉 denotes an inner product. The set of functions {ϕi} may be thought of
as a set of basis functions. The “right” choice of basis functions is critical for the
quality of the model, and the tools presented here allow one to explore different
possibilities.

For example, in the pairwise contact potential two amino acids of type α and
β (α, β ∈ {1, 2, . . . , 20}), respectively, are said to be in contact if the distance of
their geometric centers is less than a certain threshold (here we use the distance
of 6.4 Å[13]). The energy as a function of a given sequence of amino acids s and a
given three-dimensional structure x can thus be expressed in the following way:

Ey(s, x) =
∑

α≤β
yα,βNα,β(s, x), (1)

where Nα,β(s, x) represents the number of α-β contacts when sequence s is folded
into structure x, and yα,β are (unknown) weight parameters which represent the
contribution such a contact makes toward the overall energy of the molecule.



4 Michael Wagner et al.

In Section 4.2 we will refer to two other models, discussed in detail in [13].
We call them threading onion models (THOM) since they characterize structural
environment (“profile”) of an amino acid in terms of its contact shells. THOM1
models define the type of a residue using the first contact shell only and it is
meant to capture the solvent exposure of amino acid residues. The nature of a
given contact is disregarded and one simply counts the number of times a side
chain of type α has a given number of neighbors (contacts):

Ey(s, x) =
∑

α

k∑

m=1

ym,αNm,α(s, x). (2)

Nm,α(s, x) represents the number of times a side chain of type α has m contacts,
k is the maximum number of contacts and ym,α are parameters to be determined.
THOM2 models, which include the second contact shell (neighbors of neighbors),
are meant to mimic pairwise interactions while preserving the efficiency of profile
models (see [13] for details).

2.2. Optimization of the Parameters of the Potential Function

One traditional and widely used approach to finding values for the parameter
vector y has been to derive them from statistical information about native folds
that are already determined. For example, for the contact potential (1),

yi = −C ln(pα,β/(pαpβ)), (3)

where C is a constant that defines the energy units, whereas pα and pβ are the
respective frequencies with which the amino acids appear in the chain, and pα,β
is the frequency of contacts of that type [16].

These statistical, knowledge-based potentials learn form the native structures
(“good” examples) only. In order to increase their power to distinguish misfolded
states (the “bad” examples) from native states, more sophisticated protocols
incorporate data from decoy folds. To achieve this, we demand that the models
mimic the postulate that the native state have the lowest energy. If we denote the
native structure of a given sequence s by x∗s, then the perfect potential function
should satisfy:

Ey(s, x) > Ey(s, x∗s) ∀s, ∀x 6= x∗s,

or, using the expansion in terms of basis functions,

∆Ey = 〈Φ(s, x)− Φ(s, x∗s), y〉 > 0 ∀s, ∀x 6= x∗s. (4)

A slight but meaningful generalization arises when introducing the notion of a
distance between structures in order to distinguish between “close to native” (but
misfolded) versus radically different structures. By demanding that the energy
gap for the latter be larger than for the former we achieve hierarchical ordering



pPCx for Protein Folding 5

of misfolded states (known as “funnel” in the protein folding literature). In this
case we have reason to demand that

〈Φ(s, x)− Φ(s, x∗s), y〉 ≥ bx,x∗ ∀s, ∀x 6= x∗s (5)

for appropriately chosen numbers bx,x∗ > 0 that in general should be propor-
tional to the distance between the native and misfolded structure.

One approach to designing potentials that improves upon statistical poten-
tials is z-score optimization [10]. Here the quality of a parameter vector y is
measured using the distribution of energy gaps ∆Ey defined in (4). In partic-
ular, the goal is to maximize the dimensionless ratio of the first and second
moments of the distribution (the “z-score”):

z(y) =
µ(∆Ey)

σ(∆Ey)
. (6)

µ and σ denote the mean and standard deviation of the energy gap distribution,
respectively. The quantity z is, of course, nonlinear in its arguments. While z-
score optimization may lead to remarkable improvements in the quality of the
trained potentials, it is heuristic in nature and it does not rule out negative
energy gaps.

Our goal is to attempt to adapt the models by choosing the parameters y such
that (4) holds explicitly. In other words, we would like the models of the energy
function to perfectly recognize native structures. To this end, we sample misfolded
conformations to form a finite system of linear inequalities. The prediction and
recognition capability of the resulting model will depend greatly on the number
and type of misfolded structures that are included in the consideration. We
employ a simple procedure to generate decoy structures called gapless threading,
in which sequences are (imaginatively) folded into structures that are known not
to be their native states [13].

In general the number of parameters in the models that are of relevance to us
is on the order of a few hundreds. We aim to allow for the solution of problems
with hundreds of millions of constraints, resulting from extensive sampling of
misfolded structures. Given sufficient diversity of sampled types of proteins and
a large set of inequalities (one per decoy), one may hope that an appropriate
set of basis functions {ϕi} would capture the essential features of the energy
function so that the model E recognizes the structures in the database correctly.
In Section 4.2 we will use training sets of decoy to find parameters y and then
verify the prediction capability of the resulting model on a different test set of
decoys and structures.

There are a number of techniques to solve linear systems of inequalities (see,
e.g., [20] for alternatives in the protein folding context); we focus on Linear
Programming here. Linear Programming is equivalent to solving linear inequality
systems, and the modern algorithms we use allow for the efficient solution of
problems with the dimensions we are interested in.



6 Michael Wagner et al.

3. Linear Programming Solutions

The requirement that the parameters y define a model that satisfies the inequal-
ities (4) for a set of decoy structures can be written as a system of strict linear
inequalities

AT y > 0, (7)

where AT ∈ IRm×n. Typically n is on the order of a few hundreds (one column
per basis function ϕi) and m is on the order of tens of millions or more (one row
per generated decoy fold). We note that if a solution to (7) exists, then it can
be scaled to satisfy the system

AT y ≥ ρ1l, (8)

which is a problem more amenable to computations. ρ > 0 is an arbitrary con-
stant and 1l is the vector of ones, which is chosen merely for convenience. Our
specific choices for ρ will be discussed in Section 4.2. In the more general case (5),
which we will refer to from now on, we get a system

AT y ≥ b, (9)

where b > 0 is the vector of desired energy gaps.

3.1. Modeling Techniques and Choice of Algorithm

There are a number of ways to cast (9) as Linear Programming problems. Since
any feasible y can be scaled with a positive constant one might think of imposing
a constraint on the norm of y in order to bound the feasible region (see, e.g.,
[18] for an example of this approach). However it is not a priori clear that the
resulting system is feasible since we have just introduced an (arbitrarily scaled)
right hand side. Hence for now we refrain from introducing this scaling of y
explicitly and instead rely on the quality of the software used to produce a
well-scaled parameter vector whenever possible.

Our first approach lies in adding a trivial objective function to get

(P )
min 0T y
s.t. AT y ≥ b. (10)

It is instructive to look at the corresponding dual problem:

(D)
max bT z
s.t. Az = 0

z ≥ 0.
(11)

We see immediately that the dual problem is always feasible, and in fact that
either the origin is the only feasible and hence optimal solution or the dual
problem is unbounded (which implies an infeasible primal constraint system).
Both of these cases are obviously of interest to us, we discuss their relevance to
us in the following section.



pPCx for Protein Folding 7

There are two prevalent types of software for Linear Programming: those
codes which are based on the simplex method and those based on the more
recent interior-point methods. Although we don’t want to rule out that a so-
phisticated implementation of the simplex method (with column generation tech-
niques) might be successful in this case, we note that simplex-based methods are
not easily parallelized and is likely to run into difficulties due to the degeneracy
of the problems.

Instead we focus on using interior-point algorithms to solve (P ). The in-
terested reader is referred to [21] for an excellent in-depth introduction to these
methods, we constrain ourselves to pointing out some of the features that are im-
portant in this context. Interior-point methods are Newton-like iterative methods
that solve a sequence of perturbed KKT systems. Most importantly, they enjoy
polynomial-time convergence properties and have been implemented in very effi-
cient software that is competitive with implementations of the celebrated simplex
method. Usually (i.e., for reasonably sized problems) the major computational
effort required in each iteration lies in forming a matrix of the form AD2AT and
then solving a linear system with this matrix using a modified Cholesky factor-
ization. (A is the matrix of the linear equality constraints given to the solver
and D2 is an iteration dependent diagonal matrix.)

Interior methods have another feature which is beneficial in the context of
our application (besides being amenable to parallel computation). Ideally we
would like the energy gaps ∆Ey from (4) to be as large as possible. This would
mean that the native structures have significantly less energy that any misfolded
shapes, something that is generally conjectured to be the case for the true en-
ergy function also. This corresponds to having a solution that is, in some sense,
“centered”, i.e., where the distance to the boundary of the polyhedron is max-
imized. Interior-point algorithms are known to converge to the analytic center
of the primal-dual optimal face, which, while not identical with the geometric
center, nevertheless bodes well for the solution being away from the boundary
of the polyhedron. Since the system AT y ≥ b is unbounded (and thus also the
optimal face of (10)), the notion of an analytic center is not well-defined in this
context. Nevertheless, and even though there is no theoretical guarantee that
the algorithm will produce nicely scaled and centered solutions, our experience
has never produced examples where this is not the case.

A more sophisticated LP-modeling approach which we mention here avoids
the aforementioned unboundedness of the optimal face by minimizing the norm
of the parameter sought. Additionally, it deals explicitly with infeasibility by
introducing slack variables z and minimizing their norm:

(P ′)
min ‖y‖1 + γ‖z‖1
s.t. AT y + z ≥ b (12)

Here γ is a tradeoff parameter that must be chosen in advance. The dual
problem can be written in the following way:

(D′)
max bTx
s.t. −1l ≤ Ax ≤ 1l

0 ≤ x ≤ γ1l
(13)



8 Michael Wagner et al.

The advantage of this formulation is that both problems are guaranteed to be
feasible and their respective optimal faces are guaranteed to be bounded, which
implies that their analytic center is well-defined.

This formulation is reminiscent of Support Vector Machines (see for example
[8]), except that the 1-norm is used for the minimization of ‖y‖. Support Vector
Machines are quadratic programming problems with vast applications in data
mining and data classification. Our particular case can be interpreted as finding
a separating hyperplane between the energy gaps and the origin, so that one of
the two data classes effectively just consists of a single vector (the zero vector).
We conjecture that an efficient implementation of a massive support vector ma-
chine (such as the on presented in [8] will be a viable alternative to our linear
programming approach.

Turning now to our specific application: we note that if problem (P ) or (P ′)
were to be fed to any of the interior solvers we are aware of, then slack variables
would be introduced to transform the (primal) constraints into equalities. As
a consequence the resulting system AD2AT would have millions of rows and
columns (for the problems of size we are interested in) and be completely dense,
making any computation with it unrealistic. However, the respective dual prob-
lems are already in the standard form which solvers use internally and the system
to form and solve in this case has row and column dimension of a few hundred
(and would thus be comparatively trivial!). We conclude that if we can hold the
constraint matrix in a distributed computing environment and allow for matrix-
matrix and matrix-vector multiplications, we can use standard interior-point
algorithms to solve these problems. We also note that the dimensionality of (D ′)
is only marginally larger than that of (D), the computational effort required to
solve either one will essentially be the same.

3.2. Dealing with Infeasibility and Insufficient Memory

In the previous section we alluded to the case where the systems of inequali-
ties (7) (or (9)) admits no solution. If this is the case then this simply means
that the model characterized by the set of basis functions {ϕi} in question is not
sufficiently sophisticated to correctly recognize all the proteins in the database
(with the chosen desired energy gaps b). From conceptual point of view, this
outcome is certainly a valuable information and an important conclusion when
a given model is to be evaluated. For example, [19] and [17] show this way that
the simple contact potential is in fact not generally good enough to recognize all
structures that are already known.

However, the issue is more subtle than a simple decision whether linear in-
equality system is feasible or not. Not including enough native and misfolded
structures in the training set can result in “underfitting” of the parameters for
a given model, which is likely to result in poor performance on a larger test
set and in real applications. On the other hand, with more extensive sampling
the chances of introducing inconsistent constraints increase, which might lead
one to resort to smaller training sets to avoid infeasibilities. Again, the resulting



pPCx for Protein Folding 9

potential may again be significantly underfitted. A striking example of this type
is discussed in Section 4.2.

In [15] we discuss a case in which adding membrane proteins to a database of
soluble proteins, which are characterized by different folding principles, makes
the problem infeasible. In order to find a potential which recognizes this aug-
mented set of proteins correctly the number of parameters and basis functions
needs to be increased by an order of magnitude compared to the potential for
the problem without the membrane proteins.

This motivates the need to deal with infeasible (or near-feasible) problems in
an efficient way in order to still obtain meaningful models, e.g., by attempting to
correctly recognize a maximum number of proteins. One idea to approximately
achieve this is to choose a maximal subset of satisfiable constraints. Unfortu-
nately this is known to be an NP-complete problem [6], which means that a fast
algorithm for its solution is unlikely to exist. In [15] we introduced a Maximum
Feasibility (MaxF) heuristic that aims at finding a “maximally feasible” param-
eter y, i.e., a parameter that satisfies the largest number of constraints possible.
We summarize it here as Algorithm 1.

1: Set k = 0, start with an initial approximate solution y0.
2: loop
3: Form ATk and bk by finding all rows of AT such that ATk yk ≥ bk holds.
4: if no new rows are added then
5: STOP.
6: end if
7: Compute a centered solution by running an interior-point algorithm.
8: Let yk+1 be the solution obtained. Set k = k + 1
9: end loop

Algorithm 1: The MaxF heuristic.

We stress that this is only a heuristic and one whose performance will depend
critically on the choice of a good starting point. Nevertheless, and as we show in
Section 4.2, we have found it to be very useful in our application. Starting, e.g.,
from a statistical potential (3), which can always and easily be computed, the
interior-point solutions to the subproblems in the heuristic each result in further
improvement of the quality of the solution. Another plausible initial solution
can be obtained by carefully selecting a subset of proteins for which we want
to impose perfect recognition, and which is sufficiently diverse to capture the
underlying, dominating physical characteristics of the folding process.

Note that in order to use the MaxF heuristic we need to be able to load all
currently satisfied inequalities into memory. For approximate solutions of a good
quality most of the constraints should be satisfied, which again motivates the
need for parallel solvers that can handle very large problems.

If the number of generated inequalities that are of interest causes the problem
to be too large to fit into the available memory, then we have little choice but to
resort to an iterative scheme in order to try to find a feasible solution (or prove



10 Michael Wagner et al.

infeasibility). In particular this was often the case when we were constrained to
a single-processor environment [17] [13]. We choose a subsystem that is small
enough to fit into memory, try to find a feasible point and check whether the so-
lution satisfies the rest of the constraints. If some of the inequalities are violated,
they are used to replace some of the constraints of the original subproblem and
the procedure is repeated. It may be necessary to intervene manually to get this
process to converge in reasonable time.

If the number of degrees of freedom is small compared to the number of
inequalities that can be solved in one shot, then this approach has proven to
be fairly successful if the problem was feasible. It is not difficult to see that,
regardless of the constraint selection procedure, this procedure is not guaranteed
to terminate if the original system is infeasible to start with. Even though our
applications do not seem to pose great difficulties in finding infeasible subsets
of inequalities in case the whole system is infeasible, we really would like to
avoid having to resort to these iterative heuristics, and being able to solve large
problems in one shot becomes crucial.

Table 1 summarizes our discussion. There are essentially two ways of avoid-
ing the undesirable case of needing to deal with an infeasible system which is
too large to fit into memory. Firstly, by implementing a parallel code for a dis-
tributed memory environment, we are able to solve larger problems. Secondly,
with increasing sophistication, the models tested are more likely to be able to
recognize increasingly larger numbers of protein structures and are hence less
likely to produce infeasible systems. We conclude that the challenge is addressed
to both computational scientists and biochemists to increase the quality of the
models and the scalability of the software.

problem fits into memory problem is too large

feasible · heuristic iterative scheme

problem “easy” · works if subproblems

are large enough

infeasible · get proof of infeasibility · heuristic might cycle

problem · use MaxF heuristic · want to avoid this case

Table 1. Strategies of dealing with infeasible or large problems

3.3. pPCx: A Tailored Parallel Dense Implementation

The problem given by (10) with tens of millions of inequalities cannot be solved
by conventional and readily available software. Given the dimensions and the
fact that the constraint matrix A is in general almost completely dense we need
to be able to resort to a distributed memory environment in order to have a
chance of solving these problems without having to use the heuristic iterative
schemes outlined previously. As mentioned before, the dual problem (11) is more



pPCx for Protein Folding 11

amenable for solvers since it is already in the commonly used standard form.
Hence we will always let the solvers work on (11), the variables of interest to us
will be the dual variables. The formulation (13) has not been implemented yet,
this will happen in a future version.

A = p1 p2 p3 pk

Fig. 1. Distribution of the constraint matrix

Our approach was to tailor the interior-point software PCx [7] to fit our needs.
PCx is a publicly available, state-of-the-art serial implementation of a primal-dual
predictor-corrector interior-point algorithm which enjoys widespread popularity
in the optimization community. We replaced the sparse serial data structures
and basic linear algebra routines by parallel dense counterparts. In particular,
the constraint matrix A as well as all long vectors (vectors of length m) like
the variables z are held in distributed form only. The distribution is done in the
obvious way, with each of the k processors holding m/k columns of the matrix
A (see Figure 1). This way, we expect the formation of the matrix AD2AT to
speed up linearly with the number of processors. We can easily avoid having to
store both the matrix A and its transpose by forming AD2AT as a sum of outer
products:

AD2AT =
m∑

i=1

d2
i aia

T
i , (14)

where ai denotes the ith column of A and di the ith diagonal entry of D. Note
that the matrix AD2AT is small and that the effort to solve the associated
system is comparatively negligible. Hence we expect the bottleneck in this case
to lie in forming the matrix. As a consequence of the expected linear speedup
for the formation of the matrix AD2AT we expect the overall code to scale well
with increasing problem size and number of nodes.

The computations also require several matrix vector products in each itera-
tions, both involving the matrix A and its transpose AT . Since the short vectors
of length n are kept in serial (i.e., each processor owns a copy of each short vec-
tor), forming Az requires nontrivial communication among the processors which
does not to scale as well.

In order to leverage off of existing parallel linear algebra packages we chose
to use the data structures provided by the package PLAPACK [1]. However,
the overhead associated with the PLAPACK routines (e.g., matrix-vector mul-
tiplications) is so significant that we chose to re-implement all necessary BLAS
routines in order to speed up the code (an earlier implementation using the
PLAPACK routines turned out to be impractically slow). The solution of the
linear system is done using a modified version of the parallel Cholesky solver
provided by PLAPACK (see [7] for details on that modification).

At present we can store approximately 220,000 inequalities in 210 parameters
per GB of RAM. Note that, for convenience, we store the matrix entries in double



12 Michael Wagner et al.

precision format and do not yet exploit the fact that these entries typically are
small integers. This will change in a future version of pPCx.

The data is generated using a package called loopp developed by Meller and
Elber [12] which performs the threading of the sequences into structures in or-
der to generate the decoys. This process is currently done in serial for simplicity,
parallelizing this should be straightforward and will be done in the near future.
Each process then reads the local portion of the matrix A from files, the data is
put in the appropriate data structures and the core optimization code is called.
Preprocessing of the constraint matrix is turned off since it would require ac-
cessing and comparing entire columns and rows of the constraint matrix and
thus require significant communication overhead. Our experience shows that the
models investigated do not require preprocessing in the sense that the code does
not fail because of linear dependencies.

We ran our code on the Microsoft Windows 2000 based Velocity Cluster at
the Cornell Theory Center. This machine consists of 64 nodes with 4 Pentium
III-based processors per node running at 500 MHz and with 4 GB of main
memory and 50 GB of disk space per node. For optimal performance we ran the
code on at most 2 processors per node. The largest problem we solved so far
consisted of approximately 60 million inequalities with 180 parameters. Since
the implementation is entirely written in C with MPI extensions it is entirely
portable to other platforms. Specifically one could imagine running on a large
network of (possibly heterogeneous) workstations as long as the communication
between them is not too much of a bottleneck.

4. Results

4.1. Parallel Performance

Our main interest is to find a feasible solution to the parameter identification
problem (9), which corresponds to finding a dual feasible solution for the problem
that is given to the Linear Programming solver. We modified the termination
criteria in pPCx slightly to reflect this somewhat special case. Our experience
with problems of different sizes is that typically between 5 and 20 iterations are
necessary to find an optimal solution, and up to 60 if the problem is infeasible.
The number of iterations obviously depends on the particular choice of right-
hand side in (10). In particular, the number of iterations will depend on the
choice of the constant ρ in (8). For the experiments presented here we chose
ρ = .01 since this seems to represent a reasonable balance between computation
time and feasibility of the resulting parameter vector.

The solution times vary from a few minutes (for problems with only a few
hundred thousand constraints) to about 2.5 hours for a feasible problem with
ca. 60 million constraints, solved on 128 processors.

Table 2 shows the performance on a problem with 30,211,442 constraints and
200 parameters. The somewhat unorthodox choice of numbers of processors is
solely due to memory requirements, the matrix does not fit onto just 32 pro-
cessors. The problem is infeasible, which for the purposes of this evaluation is



pPCx for Protein Folding 13

34 processors 64 processors

InitTime 176.30 (1.7 % of total) 97.62 (1.7 % of total)

LoopTime 10158.95 (98.1 % of total) 5664.12 (98.2 % of total)

FormADATTime 8040.23 (79.1 % of loop) 4424.49 (78.1 % of loop)

PredictorTime 677.52 (6.7 % of loop) 397.58 (7.0 % of loop)

CorrectorTime 693.08 (6.8 % of loop) 403.68 (7.1 % of loop)

Factorization 42.50 (0.4 % of loop) 43.43 (0.8 % of loop)

TotalTime 10351.72 5770.57

Table 2. Scalability on a problem with 30 million constraints

irrelevant. The Linear Programming solver took 57 iterations to terminate. Note
that these solution times refer to the Linear Programming part only and do not
include the data generation performed by the threading software loopp.

The TotalTime figure is the sum of InitTime (setup time plus time to find
an initial point) and LoopTime (the main loop in the interior-point algorithm).
LoopTime, on the other hand, is the sum of FormADATTime (the time it takes to
form the Schur complement matrix), PredictorTime and CorrectorTime (time
to compute the components of the search direction) and Factorization. As ex-
pected, the computation is largely dominated by forming the Schur complement
matrix (14), and thus the speedup for a problem of this size is linear, as ex-
pected. The other parts of the computations don’t speed up as well, due to more
communication overhead associated with the matrix-vector products of the form
y = Az. The factorization of the 200× 200 matrix is done using the PLAPACK
code and does not speed up, probably because the matrix involved is too small.
At this stage we are not concerned about that since the computation time spent
on the factorization is negligible.

For a more comprehensive demonstration of the code scalability we present
results of an experiment done with an arbitrarily chosen subset of 2, 219, 755
inequalities from the original constraint set of 30M. Figure 2 shows the overall
speedup as well as the speedups of the various components of the algorithms.
pPCx took 17 iterations to find a solution.

We see an overall speedup factor of roughly 1.8, i.e., doubling the number
of processor results in a reduction of about 4/9 computation time. It is not
surprising that this is somewhat less impressive than for the larger problem
presented earlier, since the percentage of computation spent in forming AD2AT

is smaller. The speedup factor for ComputeADAT is closer to 2.

4.2. Applications to the Design of Folding Potentials

We applied pPCx, in conjunction with loopp threading program [12], to evaluate
and design several folding potentials. To keep the scope of this paper contained
we present a few representative computational results that are meant to illustrate
the power and value of the algorithms discussed in the previous sections. The
first set of experiments we present here consist of applying the MaxF heuristic



14 Michael Wagner et al.

4 8 16 32

Processors

0

500

1000

1500

T
im

e 
[s

ec
]

InitTime
LoopTime
ComputeADAT
Predictor
Corrector
Factorization
TotalTime

Performance for (m, n) = (2219755, 200)

Fig. 2. Scalability on a problem with 2.2 million constraints

discussed in Section 3.2 to potentials introduced in Section 2 to see whether we
can obtain improvements in their performance. We seek solutions that recognize
possibly large sets of native structures when presented with a population of
misfolded structures. We first discuss profile models (THOM1 and THOM2)
and then a pairwise interaction model.

To test the recognition capabilities of a particular model of a potential energy
function we train its parameters on a set of inequalities, derived form the training
set of proteins using gapless threading. We first attempt to solve the whole
training problem. If it proves to be infeasible, we perform a number of iterations
of the MaxF procedure, starting from a certain initial guess, which is either a
statistical potential derived using the loopp program or it is taken from the
literature. The number of inequalities that are still not satisfied at convergence
is used as a measure of the difficulty of a given training set and the quality of
the model. The performance of the trained potentials is further evaluated on a
control set of inequalities, derived from a disjoint set of proteins.

We used three different sets of proteins, developed before to train and test
folding potentials. These sets were drawn from the Protein Data Bank PDB
[4], which currently contains (as of January 2002) about 17,000 structures, with
about 5000 distinct homology modeling targets that form a non-redundant sub-
set of the PDB on the family level. The first set, which will be referred to as the
TE set, was developed by Tobi et. al. [18] and it includes 594 structures chosen
according to diversity of protein folds but also some homologous proteins (up to
60 percent sequence identity). Therefore it poses a significant challenge to the en-
ergy function. The total number of inequalities that were obtained from the TE



pPCx for Protein Folding 15

set using gapless threading was 30,211,442. The second and third sets, referred
to as S1082 and S2844, consist of 1082 and 2844 proteins, respectively. These
were chosen to be relatively dense and non-redundant subsets of the databank.
The S1082 set is used as control, whereas S2844 set is used to retrain pairwise
model on a much larger set of proteins. The TE and S1082 sets are disjoint,
although the S1082 set includes many structures that are relatively similar to
representatives in the TE set [13]. All training and testing sets are available from
the web [12].

As demonstrated before, the TE set is infeasible for the THOM1 model (2),
and the parameters published in [13] were optimized on a smaller (feasible) set
of proteins. Here, we take this potential as the initial solution y0, and apply
the MaxF procedure. The improvement is shown in Table 3. Column 2 lists the
number of proteins that are not recognized correctly, column 3 the number of
inequalities that are violated and, the last column contains the z-score as defined
in (6). These are in fact three different measures of the quality of approximate
solutions. Iteration 0 corresponds to the initial potential. The results on the
training set are included in the left panel, whereas the results on the S1082 set,
which is used as a control are included in the right panel.

—TE training set— —S1082 control set—

MaxF iteration not recog. viol. ineqs. z-score not recog. viol. ineqs. z-score

0 120 162,274 1.58 415 539,664 1.42

1 59 1,217 1.87 360 249,854 1.66

2 54 905 1.93 358 250,850 1.66

Table 3. Results using MaxF procedure on a THOM1 potential

The results show a qualitative improvement on the training set. The ini-
tial solution violates more than 160 thousand constraints out of approximately
30 million in the TE problem. After just two iterations (with bulk of the im-
provement in the first iteration - note that we did not attempt to achieve full
convergence) an approximate solution that violates only 905 constraints was
obtained. The increase in z-score, from 1.58 to 1.93, indicates also the desired
change in the overall shape of the distribution of energy gaps. The performance
of the potential on the control set improved significantly as well, although to a
smaller extent, still violating approximately 250 thousand constraints (out of 95
million included in the control set). As reported previously [13], various folding
potentials from the literature reach only a limited accuracy on the S1082 set,
which appears to be a demanding test, mostly because of many short proteins
included in this set.

The TE set also proved to be infeasible for THOM2 model with two contact
shells if fewer than 300 parameters were used [13]. Here, we consider a simplified
THOM2 model with only 180 parameters. The reduction in number of parame-
ters results from a different coarse graining of structural environments. Namely,
we group together the second and the third, as well as the fourth and the fifth



16 Michael Wagner et al.

classes of primary sites that were used before, reducing the number of different
types of primary sites from five to three (see [13] for detailed definition of contact
types in THOM2 energy model). Using a statistical potential derived from the
TE set as a starting point and applying MaxF we obtain a significantly improved
reduced THOM2 potential with just 180 parameters, which approximately solves
the TE problem that required as many as 300 parameters to solve it exactly.

As evidenced in Table 4, just one iteration of MaxF reduces the number of
violated inequalities from approximately 265 thousand to 267. The increase in
z-score from 1.22 to 1.87 is also impressive. A significant improvement in terms
of the number of violated inequalities (from 1.6 million to 217 thousand) and
overall shape of the distribution of energy gaps (z-score increasing from 1.03
to 1.53) is also observed on the control set. However, only minor improvement
is observed in terms of the proteins that are not recognized exactly (from 364
to 335). The previously published THOM2 potential with 300 parameters when
applied to the S1082 set misses only 205 proteins, although on the other hand,
it violates more constraints (240 thousand) with a lower z-score of 1.35.

—TE training set— —S1082 control set—

MaxF iteration not recog. viol. ineqs. z-score not recog. viol. ineqs. z-score

0 102 265,284 1.22 364 1,600,612 1.03

1 34 267 1.87 335 216,623 1.52

2 34 233 1.87 335 216,955 1.53

Table 4. Results using MaxF procedure on a THOM2 potential

Of course, a simultaneous increase in the number of recognized proteins and
satisfied inequalities cannot be guaranteed, and in fact discrepancies between
these two quality measures have been observed for a number of potentials from
the literature on the S1082 set [13]. Since in practice additional filters, such as
statistical significance estimates, are applied to a number of low energy matches,
the solution with a smaller number of violated constraints may be advantageous.

The next potential we discuss here is a pairwise model (1). The TE set was
used by Tobi et. al. [18] for parameter optimization, and the problem proved to
be feasible. The solution had to be obtained iteratively by solving subproblems
which fit into the memory of a single processor (see the scheme described in
Section 3.2, and also Table 1). An additional objective function was used to skew
the solution towards maximizing the z-score and thus to improve the quality of
the energy gap distribution [18]. We attempted to improve this potential further.
First, we solved the TE problem in one shot. The resulting solution does not show
improvement over the Tobi et. al. potential (the z-score on the training set was
1.73, compared to 1.75). Secondly, and in order to further assess the effects of the
training set and to sample more extensively from structural variations in protein
families, we used the S2844 set for training. To keep the size of the training set
manageable we only derived decoys for pairs of sequences and structures that are
similar in length (the sequence must be not shorter than 80% of the structure



pPCx for Protein Folding 17

it is aligned to, in order to generate a decoy and a constraint in effect). This
results in an infeasible problem of approximately 16 million constraints. The
well trained Tobi et. al. potential violates 64 thousand inequalities, missing as
many as 600 proteins. When applying MaxF (with the Tobi et. al. potential as
starting point) only a marginal improvement is observed: 71 additional proteins
and approximately 2000 additional inequalities are satisfied after 5 iterations;
the z-score of 1.83 remained unchanged.

Although MaxF’s failure to improve does not constitute a definitive answer
(and may simply have occurred due to the specific structure of the problem at
hand), we conjecture that the observed results are an indication of the limits
of the capacity of pairwise models. In light of the above, it is suggestive that
the infeasibility reached before on various sets of native and misfolded struc-
tures with pairwise models [19] [17] was not due to some rare constraints, but
rather due to the low resolution of the model. While non-redundant, the S2844
set includes many structural variations of certain folds with a distance of at
least 3 Ångstrom RMS between the superimposed side chain centers [13]. This
threshold of dissimilarity is apparently below the resolution of pairwise folding
potentials. What we believe is interesting in this context is that the results from
the application of optimization techniques can be interpreted biologically and
will eventually lead to improved models and parameterizations of the free energy
functional that underlies the process of protein folding.

5. Discussion and Conclusions

We described our efforts to provide practical large-scale Linear Programming
based tools for the design and evaluation of potential functions that underlie the
folding process of proteins. The interplay of biological and physical insights on
one hand and optimization and modeling techniques, large-scale computing and
heuristics on the other hand is used to facilitate the design of accurate and effi-
cient potentials. The results presented here support the claim that biologically
relevant results may be obtained using the new techniques. A systematic appli-
cation of these techniques is expected to yield a significant improvement in the
quality of potentials. We also expect to gain new insights to guide the selection
of decoys to be included in the training process. The choice of a training set is a
critical component of any successful learning procedure that extrapolates from
examples.

With the present incarnation of pPCx we are able to solve problems with a
few hundred parameters and tens of millions of constraints in a one-shot ap-
proach in a matter of minutes. Development of pPCx is ongoing. An extension of
the current code will include an implementation of the alternative formulation of
the potential modeling problem, defined in Section 3.1. The introduction of slack
variables is expected to provide a more satisfactory solution for the infeasible
case, while avoiding an increase in the size of the dual problem that we solve.
It remains to be seen whether column generation or sampling techniques can be
reliably used to speed up computation time. The software itself is application



18 Michael Wagner et al.

independent, we submit that any problem with similar dimensions (primal di-
mension several orders of magnitude smaller than dual dimension) and a dense
constraint matrix can be efficiently solved using our code. In the future we plan
to incorporate the parallel machinery developed for pPCx into a Support Vector
Machine implementation that would handle large classification problems arising
in genomics.

Acknowledgements. The authors gratefully acknowledge support from the Cornell Theory Cen-
ter in the form of computing time on the Velocity Cluster. JM acknowledges support from the
Children’s Hospital Research Foundation, Cincinnati. RE acknowledges the support of NSF
grant on ’Multiscale Hierarchical Analysis of Protein Structure and Dynamics’.

References

1. P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de Geijn,
and Y.-J. J. Wu. PLAPACK: parallel linear algebra package. In Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing (Minneapolis, MN,
1997), page 8 pp. (electronic), Philadelphia, PA, 1997. SIAM.

2. C. Anfinsen. Principles that govern the folding of protein chains. Science, 181:223–230,
1973.

3. J. R. Banavar and A. Maritan. Computational approach to the protein-folding problem.
Proteins: Structure, Function, and Genetics, 42:433–435, 2001.

4. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H.Weissig, I. Shindyalov, and
P. Bourne. The protein data bank. Nucleic Acids Research, 28:235–242, 2000. See also
http://www.rcsb.org/pdb/.

5. J. U. Bowie, R. Luthy, and D. Eisenberg. A method to identify protein sequences that
fold into a known three-dimensional structure. Science, 253:164–170, 1991.

6. N. Chakravarti. Some results concerning post-infeasibility analysis. Eur. J. Oper. Res.,
73:139–143, 1994.

7. J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright. PCx: an interior-point code for
linear programming. Optim. Methods Softw., 11/12(1-4):397–430, 1999.

8. M. C. Ferris and T. S. Munson. Interior point methods for massive support vector ma-
chines. Technical Report 00-05, Data Mining Institute, Computer Sciences Department,
University of Wisconsin, Madison, Wisconsin, 2000.

9. R. A. Friesner and J. R. Gunn. Computational studies of protein folding. Annu. Rev.
Biomol. Struct., 25:315–42, 1996.

10. R. A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolynes. The statistical mechanical
basis of sequence alignment algorithms for protein structure prediction. In R. Elber,
editor, Recent Developments in Theoretical Studies of Proteins, chapter 6. World Scientific,
Singapore, 1996.

11. V. Mairov and G. Crippen. Contact potential that recognizes the correct folding of globular
proteins. Journal of Molecular Biology, 227:876–888, 1992.

12. J. Meller and R. Elber. LOOPP: Learning, Observing and Ouputting Pro-
tein Patterns. Department of Computer Science, Cornell University, available at
http://www.tc.cornell.edu/CBIO/loopp.

13. J. Meller and R. Elber. Linear programming optimization and a double statistical filter
for protein threading protocols. To appear in Proteins, 2001.

14. J. Meller and R. Elber. Protein recognition by sequence-to-structure fitness: Bridging
efficiency and capacity of threading models. In R. Friesner, editor, Computational Methods
for Protein Folding: A Special Volume of Advances in Chemical Physics, volume 120. John
Wiley & Sons, 2002 (in press).

15. J. Meller, M. Wagner, and R. Elber. Maximum feasibility guideline in the design and
analysis of protein folding potentials. To appear in J. Comp. Chem.

16. M. J. Sippl and S. Weitckus. Detection of native-like models for amino acid sequences
of unknown three-dimensional structure in a database of known protein conformations.
Proteins, 13:258–271, 1992.



pPCx for Protein Folding 19

17. D. Tobi and R. Elber. Distance-dependent pair potential for protein folding: Results from
linear optimization. Proteins: Structure, Function and Genetics, 41:40–46, 2000.

18. D. Tobi, G. Shafran, N. Linial, and R. Elber. On the design and analysis of protein folding
potentials. Proteins: Structure, Function and Genetics, 40:71–85, 2000.

19. M. Vendruscolo and E. Domany. Pairwise contact potentials are unsuitable for protein
folding. Journal of Chemical Physics, 109:11101–11108, 1998.

20. M. Vendruscolo, L. A. Mirny, E. I. Shakhnovich, and E. Domany. Comparison of two
optimization methods to derive energy parameters for protein folding: perceptron and
z-score. Proteins: Structure, Function, and Genetics, 41:192–201, 2000.

21. S. J. Wright. Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.


