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Arrangement of molecules in a Arrangement of molecules in a
liquid liquid crystal

m Molecular director n : average molecular orientation, |n| =1



Nematic Energy

smectic liquid

SRS Frank elastic energy density for nematic LC
fo =K1(V-1)? + Ka(n-V x )2 + Ks[n x (V x n)[?
+ (Ko + Ky)(tr(Vn)? — (V - n)?)
K; : splay, (n,,ng,n.) =(1,0,0)

K, @ twist, (ng, ny, x,) = (cos ¢(z), sin ¢(z), 0)
K3 : bend, (n,,ng,n.) = (0,1,0)

Introduction to
Liquid Crystals
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The last term is null-Lagrangian;
tr(Vn)? — (V-n)? = div[(Vn)n — (divn)n]

It depends only on the restriction of n and its tangential gradient
to the boundary 912.



Cholesteric liquid crystals
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N K
crystai m One constant approximation: K, = K = Ks = o >0, K1 =0

Introduction to fn = 5|Vn|2
2

Liquid Crystals
m Cholesteric liquid crystals (Chiral nematics, N*)
for =K1(V-n)> + K2(n-V xn+7)° + Kz|n x (V x n)|?
+ (K2 + K1) (tr(Vn)® — (V- n)?)

fnr(nr) =0, where n, (x) = (cos(7z), sin(7z), 0).

Nematic LC 'f.:llobeslcn'l: TLiguid Crysial Struciure
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Boundary conditions
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m Strong anchoring condition (Dirichlet Boundary condition)
iroduction o m Weak anchoring condition : add Rapini-Popoular surface

Liquid Crystals energy
FS = C/ (n . 9)2
o0

m Ifc < 0,ntends to be | to e, e is an easy axis.
mlfc>0,ntendstobe Ltoe

Theorem (Hardt, Kinderlehrer, Lin)

Assume that 0%) is a smooth surface, ny is smooth, and
K1, K>, K3 > 0. Then there is a minimizer of F,, in the class

A={n:Q = S% njsg = no,/ |Vn|? < oo}
Q
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m n(z) may have singularities, eg, n; = e, : line singularity
®m n, satisfies Euler equation associated with the OF energy.

Introduction to

Liquid Crystals m But, / |Vn,|*> = oo where C is a cylinder. What is wrong?
c

m Oseen-Frank theory is limited: it can only account for point
defects but not the more complicated line and surface
defects.

m Ericksen theory: the state of the liquid crystal is described by
a pair, (s,n) € R x S?, where s is a real scalar order
parameter that measures the degree of orientational
ordering.

/ s(2)2|Vn[? + K|[Vs|?
Q
where k is a material constant. This theory can account for

all physically observable defects, but is restricted to uniaxial
liquid crystal materials.



Landau-de Gennes theory
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m This theory can account for both uniaxial and biaxial phases.
Introduction to

Liquid Crystals m The state of a nematic liquid crystal is modelled by a
symmetric, traceless 3 x 3 matrix Q , known as the Q-tensor
order parameter.

m Isotropic phase when Q =0

m Uniaxial phase when Q = s(n ® n — %I)

m Biaxial phase when Q = s(n ®@ n — %I) +r(mMm®m — %])

m = f.+ f, where

o= ZIVQP
fo = atr(Q?) —btr(Q®) +ctr(Q*)



Frederiks effect : Splay geometry
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Introduction to
Liquid Crystals

m Special class of minimizers: n = cosf(z)e; + sinf(z)es

.chl &
2d\ Xa



Smectic Liquid Crystals

o m Nematic phase : Orientational order
m Smectic phase : Orientational + 1d Positional order (layer)

Liouid Grysats Smectic A : molecules are perpendicular to the layers
Smectic C : molecules are tilted w.r.t. the layer normal

m Phase transitions
Liquid «— Nematic +— Smectic +— Solid

n n =

Smectic A Smectic C

Nematic
{SMmC)

() [SmA)



Order parameter of Smectic phases

smectic liquid Order parameter U = peiq¢>

crystals

= B 5(x)=po+ %(\I!(x) + U*(x)) = po + pcos(qep) : mass density

Introduction to

Liquid Crystals where pq: locally uniform molecular mass density

NEMATIC PHASE IF THE MINIMIZER ¥ = 0.

m ¢ : layer position (V¢ : layer normal)

igllly
Il O%OOW
AL



Smectic A free energy density

smectic liquid f = fn + fA

crystals

Introduction to
Liquid Crystals

fa *IV‘I’—@qn‘I’IJr (|‘I’|2 1)?

Assuming that U = pe’?, f4 becomes

= |Vp|* + p* |V — qn|* + (p - 1)

m level sets of  are layers, Vo || n, and ¢ = [V

m |Vp|? penalizes the phase transition.
m p = 1: smectic phase.
m p = 0 : nematic phase



Free energy density for chiral smectic C LCs

smectic liquid

crystals Modified CHEN-LUBENSKY ENERGY by |.Luk’yanchuk '98

W [ = o+ fo = far +DIDLY] —CL DV’ 4Oy D[P 4w+ 0
ntroduction to
Liquid Crystals

where D, =V — ign, D20 =D, -D,V.



Free energy density for chiral smectic C LCs

smectic liquid

crystals Modified CHEN-LUBENSKY ENERGY by |.Luk’yanchuk '98

2
Introduction to f - fn*+fs = fn*+D|Di\IJ| _Cj_an\Il‘Q—i—C”‘nDn\1/|2+1"|\11|2+g|\11‘47
Liquid Crystals

where D, =V —ign, D2V =D, -D,U.

Chiral Smectic C liquid crystal (SmC*)

N

C.J. Barrett, barrett-group.mcgill.ca



Sign of C' |
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{3 Assuming that ¥ = ¢'¢, (away from the phase transition),

Introduction to

Liquid Crystals f, = D|V<p—qn|4—|—D(A<,0—C]V'n)2—CJ_|V<p—qn|2+CH(n'vw_q)Q

BC, <0:Vp=¢qmn = = SMA

m de Genne energy for Sm A: f, = —C |V — ¢n|?

¢ c
= CL>0:n-Vo =g [Vo—mf = 75 = tana = 55 |

where « is the tilt angle between the layer normal and the
director. = SM C




Phase transition from N* toward chiral smectic LCs

STectClius [Joo and Phillips, Comm. Math. Phys. 2007] Phase transition between chiral

crystals

- nematic and smectics: Characterize 7 and r as a function of ¢7 for

which

Introduction to

M EIgREE m r > 7 implies the minimizer ¥ = 0 = Chiral Nematic

N¥ - A* transition

=

=i(gT)

r=1(q )

C[ID qr

m r < r implies the minimizer ¥ = 0 = Chiral Smectic

N*-C* transition




Layer Undulations (Helfrich-Hurault effect) in Smectic A
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Helfrich-Hurault

m undeformed state (pure smectic state): ¢9 = z,n9 = (0,1)



Layer Undulations (Helfrich-Hurault effect) in Smectic A
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Helfrich-Hurault

(d) Ishikawa and Lavrentovich, PRE 2001




Helfrich-Hurault theory

smectic liquid

S Set ¢ = z — u(z, z) where u is the small displacement.

Joc
Layer displacement : u(x,z)

Helfrich-Hurault

Setting n ~ (—u,, 1), & strong anchoring

K B Xa0?

F = E(um)Q + f(uzy B (ux)2

Look for a solution of type u(zx, z) = ug cos(k,2) sin(kzx) for
z € (—h/2,h/2) and find
o2 = K1 oo T
Xafe = 3p A

where A = /K/B.




Helfrich-Hurault theory vs. Experiment
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Helfrich-Hurault
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Helfrich-Hurault theory vs. Experiment
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Joo

Helfrich-Hurault

In the experiment... Lavrentovich et al, PRE (2001, 2006)

m The lower critical field of undulation instability
m Larger layers’ displacement

m The displacement of layers immediately adjacent to the
bounding plates is nonzero.

m Weakened dependence of the layer shape on the vertical z-
coordinate when the field increases well above the threshold.




Smectic A free energy - de Gennes

smectic liquid

crystals
o Free energy

gwm) = [ (€I~ ignuf? + K|l + §(1ui* ~ 1)° - Atn- 1)) dady

Model
mQ=(-L,L)x (—d,d)

m Undeformed state : (¢, 60) = (¢e'??,0) is a trivial critical point of G
where ¢ € C such that |¢| = 1.

m Setting n = (sin, cos 9),

1d _ _
2o+ =/Q(C\wz—zqewo|2+0\¢y_zq¢|2

+K|VO* + 2g[Re(1hot)))* — A|0|?) dwdy
= L(1,0) — X [ 0] dzd
(16) / 162 dady



Stability of undeformed state
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Critical field

Ae = inf  L(v,0
(w,lgl)eA (¥,9)

where the admissible set A is given by

Model

A={(,0) e H/(U)xH"(U) : ||0]| 2ty = 1,0(z, £d) = 0 for all ,

U=R/(-L+2L7Z) x (—d,d).
i.e., periodic boundary condition in the x direction.

m If A < ). = the undeformed state is stable.
m If A > )\, = the undeformed state is unstable.
m Stable bifurcation is possible at A = ..



Reformulation
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Set 1) = iqygp. Then

L=Cqlps — 01> + Cq®loy|” + K|VO* + 29[—qS(¢)]

Model



Reformulation
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Set 1) = iqygp. Then
L=Cqlps — 01> + Cq®loy|” + K|VO* + 29[—qS(¢)]

We may assume that ¢ is a real- valued function.

Model



Reformulation

smectic liquid
crystals

Set 1) = iqygp. Then
L=Cq|ox — 0 + CqPloy|* + K|V6)?

We may assume that ¢ is a real- valued function.

Model



Reformulation
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Joo Set ¢

= iqpp. Then
L=Cqlps — O + Cqlpy | + K|VO|?

We may assume that ¢ is a real- valued function. Introducing
T = Toid/d, Y = Youd/d, and ¢ = woia/d,

Model

K/ ‘py +e|VO)? — 0¥ )dwdy
VK dX
where D = (—c,c) x (—1,1),e = < 1l,and o = .
(—¢,c) x (=1,1) v R

Theorem (Garcia-Cervera, Joo)

oc.=0(1) fore < 1.



Fourier series

smecticliquid Represent 6 and ¢ by their Fourier series,

crystals

o]

0($,y)= Z en(y)eiun:c and w(w,y)z Z ipn(y)eipnx

n=—oo n=—oo

where u, = 27n/c, then the energy becomes

Model R 1 1 1
/2 2 2 /2
C 2 = 6 971 - en - ¢n TI¥Fn dy.
( ,0) 2c E ll(elen‘ | | €| | 5|90 | ) Y

n=-—oo

1 2¢ i F.(¢n,0n,0)

n=-—oo

where § = 42 and ¢, = ipnen. Then one can see that

c=1info, =inf inf F.(p,0,n),
oc=infon =inf inf Fe(p,0:m)
where

1

B={(p,6) € HA(~1,1) x H'(~1,1) : / 10(y)[? dy = 1}.

—1



Problem
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1 1 \
[0 50t w0674 Lo -9 dy (0,00 € X
I

oo else

F5(07 @, 6) =

One can see that F.(0,¢,d) = F-(—0, —¢, §) and a minimizer is either
NI positive or negative in 1.



Problem

smectic liquid
crystals

1 1
0%+ =%+ 860>+ =(0 — ¢)*) d if (0
F(&M:{/y T30 L0 ) dy T(0,0,0) € X

oo else

One can see that F.(0,¢,d) = F-(—0, —¢, §) and a minimizer is either
il positive or negative in I. Thus we define

Xo = {(6,9,8) € WE3(I) x Wh2(I) /9>()|nl}
Xa={(6,,6) € X soewé%f)}.

We look for a minimizer of F; for X = X, (Fixed layers at the boundary)
or X = X, (general case) with the constraint

/I 18(y)|? dy = 1.



I'-Convergence
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Underlying method: the study of complex minimum problems
involving a (small) parameter ¢ is approximated by a minimum
problem where the dependence on this parameter has been
averaged out.

T"-Convergence

The notion of I'-convergence of energies is designed to
guarantee the convergence of minimum problems; i.e.,

r . .
F. — Fy = min F. := m. — mg := min Fj.

and (almost) minimizers of min F. converge to minimizers of Fj.

(Note: compactness of minimizers is given for granted)



Definition of I'-Convergence
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{F.} T'-converges to F' (F. LN Fy)if
(Lower bound inequality) F'(u) < lim i(r)lf Fo(ue) ifu. = u
E—r

(Existence of recovery sequences) for all u there exists
u. — u such that F(u) = lir% F.(ue).
E—

T"-Convergence

This convergence has been introduced by De Giorgi in the 1970s.

m (Compactness) Given {u.} such that F_(u.) is uniformly
bounded, then {u.} is relatively compact.

Then every minimizing sequence admits a subsequence
approximating a solution of the problem

min{F(u)}.




Plan - fixed layers on the boundary
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Show I'-convergence and compactness

FX0,0,0) = F§(0,9,0) @

Fixed layers



Plan - fixed layers on the boundary
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Show I'-convergence and compactness

F0,,0) = Fi'(0,¢,0)
- {f1(602 +10?)dy if0=peWyA(I),[0] >0

Fixed layers

0o else



Plan - fixed layers on the boundary
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Show I'-convergence and compactness

FX(0,0,8) = F3(0,¢,6)
B {f,(aa? +10?)dy if0=peWyA(I),[0] >0

Fixed layers

0o else

The T'-limit has a unique do=7%, 6o(y)=wo(y) =cosZy
minimizer, (6o, o, d0) ; The minimum value of F{ is 7.




Plan - fixed layers on the boundary

smectic liquid
crystals

Show I'-convergence and compactness

F2(0,0,8) & F(0,9,0)

_ [,(60° + 20 dy if0 = e Wy(I),[0] >0
Fixed layers ’ 00 else
The T'-limit has a unique do=7%, 6o(y)=wo(y) =cosZy
minimizer, (6o, o, d0) ; The minimum value of F{ is 7.

The sequence of minimizers (0., ., d.) converges to (6o, o, do).
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Layer undulations - fixed layers on the cell boundaries
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crystals Theorem (Garcia-Cervera and Joo)

Let (0, p,8) € X4 be a minimizer of F¢ constrained by
/ 0> dy = 1. Fore = 1/h < 1, we have
I

u2/h~g, Flx~m, and /|cp(y)—cosgy|2dy<<1.
I

Fixed layers



Wi
Layer undulations - fixed layers on the cell boundaries
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smectic liquid
crystals Theorem (Garcia-Cervera and Joo)

Let (0, p,8) € X4 be a minimizer of F¢ constrained by
/ 0> dy = 1. Fore = 1/h < 1, we have
I

u2/h~g, Flx~m, and /|cp(y)—cosgy|2dy<<1.
I

Fixed layers

m The frequency of the oscillation is /27 = 1/(2V27h).



Wi
Layer undulations - fixed layers on the cell boundaries
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smectic liquid
crystals Theorem (Garcia-Cervera and Joo)

Let (0, p,8) € X4 be a minimizer of F¢ constrained by
/ 0> dy = 1. Fore = 1/h < 1, we have
I

u2/h~g, Flx~m, and /|cp(y)—cosgy|2dy<<1.
I

Fixed layers

m The frequency of the oscillation is /27 = 1/(2V27h).

m The critical field is given by x ~ %



Wi
Layer undulations - fixed layers on the cell boundaries
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smectic liquid
crystals Theorem (Garcia-Cervera and Joo)

Let (0, p,8) € X4 be a minimizer of F¢ constrained by
/ 0> dy = 1. Fore = 1/h < 1, we have
I

u2/h~g, Flx~m, and /|cp(y)—cosgy|2dy<<1.
I

Fixed layers

m The frequency of the oscillation is /27 = 1/(2V27h).

m The critical field is given by £ ~ %

m The maximum undulation occurs in the middle of the cell
(y = 0) and the displacement amplitude decreases as
approaching the boundary (y = +h).

The results are consistent with the result found in the classic Helfrich-Hurault
theory.



General case: Layers are not fixed on the boundary

smectic liquid
[eom 5ot w06+ Lo - ot dy W 000 € X,
I

00 else

F2(0,,0) := {

We look for a minimizer of F." with the constraint

/, 10(y)|2 dy = 1.

General case



General case: Layers are not fixed on the boundary

smectic liquid 1 1

crystals 0’2 — /2—|—562 =(0 — 2 d if (%) (S eXn
R R TR S (RO E LI

o0

else

We look for a minimizer of F." with the constraint

/, 10(y)|2 dy = 1.

General case

(f) configuration of minimizer of F*
with e = 0.01,6 = 0.01



Plan: general case
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Show I'-convergence and compactness

F(0,0,8) = F'(6,¢,0)

General case



Plan: general case
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Show I'-convergence and compactness

FI'(0,,8) — Fg'(0,¢,0)
[;(66% + 16") dy + 6(1)* + 6(—1)*
- if6#£0,0=pcW"(I),[0] >0
T )0(1)2+6(-1)>  if5=0,0 = = constant
o else



Plan: general case

smectic liquid
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. Show I'-convergence and compactness
FI(60,0,0) — F'(6,¢,0)
[;(66% + 16") dy + 6(1)* + 6(—1)*
if6#0,0=pecWh(I),[0] >0

T )O(1)2 +6(-1)%  if6=0,0=¢ = constant
oo else
The I'-limit has a unique do=0, bo(y) = poly) = 7

minimizer, (6o, w0, 00) ; The minimum value of F§' is 1.




Plan: general case

smectic liquid
crystals

Show I'-convergence and compactness

F(0,0,8) = F'(6,¢,0)

[;(66% + 16") dy + 6(1)* + 6(—1)*
a if0#0,0=peW"(I),[0] >0

) 0(1)2+0(-1)%  if§=0,0 = ¢ = constant
00 else
The I-limit has a unique So=0, 6o(y)=¢oly) =

minimizer, (6o, w0, 00) ; The minimum value of F§' is 1.

The sequence of minimizers (6., ¢, ) converges to (8o, ¢o, do).
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I'-Convergence : Lower semi-continuity
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Lemma (Garcia-Cervera and Joo)

For every (0, ¢,5) € [L*(I)]* x R and every sequence (0;,¢;,0;) € X,
such that (8;, ¢;,8;) converges to (6, ¢, ) in [L*(I)]> x R there holds

hmlanEY; (9j7 Pi» 5]) > F(;l(97 2 5)7
J—0o0
General case

with 6 € W"2(I) and ¢ € W"2(I).

m Modify the proof for Allen-Cahn functional with Dirichlet boundary condition.
[N.C. Owen, J. Rubinstein and P. Sternberg, Proc. R. Soc. Lond. A, 1990]

O
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I'-convergence : upper bound inequality
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Lemma (Garcia-Cervera and Joo)

For any (0, ¢,9) € X, with / 10|* dz = 1 and 6 = ¢, there exists a
I

sequence (0, v;,0;) € Wy *(I) x Wh(I) x R With/|9j|2dz =1,
I
converging in [L*(I)]* x R as j — oo, to (0, ¢, §), and such that

: lim sup F2 (6;, ¢5,6;) = Fo' (6, ¢, 6).

j—oo

m Take op. = pand 6. =0
m Foréd,;
m Construct the boundary layer p.(y) from singular perturbation.

m Normalization: 6. (y) = #
ellrz(r)



g Layer Undulations
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orystals Theorem (Garcia-Cervera and Joo)
Let (6,
0)? dy = 1. Fors =1/h < 1, we have

©,0) € X,, be a minimizer of F* constrained by

I
/|<p |2dy<<1 F'~1 and p*/h=0.

General case



Layer Undulations
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orystals Theorem (Garcia-Cervera and Joo)
Let (6,
0)? dy = 1. Fors =1/h < 1, we have

©,0) € X,, be a minimizer of F* constrained by

I
/|<p |2dy<<1 F'~1 and p*/h=0.

General case

m Undulations immediately adjacent to the boundary appear.
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orystals Theorem (Garcia-Cervera and Joo)
Let (6,
0)? dy = 1. Fors =1/h < 1, we have

©,0) € X,, be a minimizer of F* constrained by

I
/|<p |2dy<<1 F'~1 and p*/h=0.

General case

m Undulations immediately adjacent to the boundary appear.
m Weak dependence of the layer shape on the z- coordinate.
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orystals Theorem (Garcia-Cervera and Joo)
Let (6,
0)? dy = 1. Fors =1/h < 1, we have

©,0) € X,, be a minimizer of F* constrained by

I
/|<p |2dy<<1 F'~1 and p*/h=0.

General case

m Undulations immediately adjacent to the boundary appear.
m Weak dependence of the layer shape on the z- coordinate.

1
m The critical field is given by k. ~ 7 lower than x? ~ %



Layer Undulations
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orystals Theorem (Garcia-Cervera and Joo)
Let (6,
0)? dy = 1. Fora =1/h < 1, we have

©,0) € X,, be a minimizer of F* constrained by

I
/|<p |2dy<<1 F'~1 and p*/h=0.

General case

m Undulations immediately adjacent to the boundary appear.

m Weak dependence of the layer shape on the z- coordinate.
1
m The critical field is given by k. ~ 7 lower than x? ~ %

. . 1
m Larger undulation displacement, ;T¢(y) from ep? ~ 0.



Bifurcation from simple eigenvalue

smectic liquid

crystals m Assumption
&3 m X, Y are Banach spaces.
mF:XxR—Y,C? (F(u,\) = 0: Euler equation)
m L := F,(0,)) has a simple eigenvalue. (L : the second
variation of the energy at a critical point)
m Check general criteria given by Crandall and Rabinowitz.
() KerL =<z >
(i) RangeL =Y has codimension 1. (If L:self-adjoint, (i) = (ii))
nd Sy (iii) Fz(0, Xo)xo ¢ Yi.
m Then there is a bifurcating curve {(z(s), A(s)) : |s| < so} of
zeroes of F intersecting (0, A) only at (0, Ao).

m There are eigenvalues and eigenvectors

Fo(x(s), A\(s))w(s) = u(s)w(s) and F, (0, N)u(N) = y(A)u(N)

m From dr = F(z, \), stability of equilibrium solution
(x(s), A(s)) is determined by the sign of n(s).



Example: Au —u® + ) u =0

smectic liquid
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Consider F(u,\) = Au — u® + \u.
m u = 0 is a solution for all \.

m F,(0,\) = Au+ Au =: Lu has a simple first eigenvalue, \g
and corresponding eigenfunction wg. i.e., KerL =< ug >.

m Since L is a self-adjoint operator, KerL = (RangeL)*. Thus,
codimension of the range of F,(0,\) is 1.

Bifrcation anlyss B F,5(0, ) = ug, but ug L rangeL

m From the theory of Crandall and Rabinowitz, (0, \¢) is a
bifurcating point and there is an analytic family of solutions

(u(s), A(s)) = (suop + s2ua(s), Ao + sXa(s))

m We can further prove that A(0) = \’'(0) = 0 and
A (0) = Q/ué > 0. = Superctritical pitchfork bifurcation!
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supercritical Pitchfork Bifurcation
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Eigenvalue problem : formal asymptotic expansion

smectic liquid
crystals

The frequency of the oscillation is smaller than O(h~/2) from
eu? ~ 0. But, what is the frequency?
m Standard process for eigenvalue problem

m Formal asymptotic expansion for the derived algebraic
equation

m Use results from I'-convergence theory
m The minimizer of F. is obtained; As ¢ — 0,

m§=¢e(2r/c)’> 4+ O(e) and
B\ =1+ (1/2+2/3(27/c)%)e + O(e?).
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Eigenvalue problem : formal asymptotic expansion

smectic liquid
crystals

The frequency of the oscillation is smaller than O(h~/2) from
eu? ~ 0. But, what is the frequency?
m Standard process for eigenvalue problem

m Formal asymptotic expansion for the derived algebraic
equation

m Use results from I'-convergence theory
m The minimizer of F. is obtained; As ¢ — 0,

m§=¢e(2r/c)’> 4+ O(e) and
B\ =1+ (1/2+2/3(27/c)%)e + O(e?).

m When ¢ = L/h = 4, the wave number is 2.

Bifurcation analysis
and Stability



Linearized problem: simple eigenvalue

smectic iquid For o = 0., except for a discrete set of the domain sizes, the
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I linearized problem

1 1
eAO+ —pp — —0+00=0
€ €
Ap—0,=0

has a solution set spanned by {6,,(y) cos unx, @, (y) sin u,x} for
some n.

Bifurcation analysis
and Stability

Kernel with £=0.1




Linearized problem: simple eigenvalue

smectic iquid For o = 0., except for a discrete set of the domain sizes, the

crystals

I linearized problem

1 1
eAO+ —pp — —0+00=0
€ €
Ap—0,=0

has a solution set spanned by {6,,(y) cos unx, @, (y) sin u,x} for
some n.

Bifurcation analysis
and Stability . N
Kernel with £=0.1 Kernel with £=0.02
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Bifurcation curve

Orp
[DMINION

UNIVERSITY

S [ Euler-Lagrange equations: for ¢ = u + v, z = (u, v, 0)

crystals

990 Fi(z,\) = C[Au + 2¢(sin 6v, + cos bvy) + g(cos 66, — sin66,)v
—¢°u] + g(1 —u® —v*)u =0,

F»(z,\) = C[Av — 2q¢(sin Qu, + cos Quy) — g(cos 06, — sin 66, )u
—¢*u] + g(1 —u® —v?)v =0,

Fs3(z,\) = KAG + Cqcos 8(uvy — vug) — sin @(uvy — vuy)]
+Asinfcosf = 0.

Bifurcation analysis
and Stability

Theorem (existence and stability)

There is an r > 0 and bifurcation curve of solutions to the system for
s € (=),

Y = 1ho + 51 + O(s),0(s) = s°01 + O(s*), and A(s) = Ao + O(s?).

Furthermore, the system has only two solutions zo = (v0,0) and
(z(s), o(s)) and the nontrivial solution is stable in a sufficiently small
neighborhood of (zo, A.).



Wiy
Numerical scheme for de Genne energy

OLp
[ OMINION

UNIVERSITY

smectic liquid .
crystals Gradlen'[ ﬂOW

o9
Fril Ap—V - n
88_? = —-nX (nx(An+V¢—n+k(n-h)h)).

JEN .
: where n x (n x —) in the second equation appears as a result of

’ n
s the constraint |n| = 1. Boundary conditions on the top and bottom
plates:

n= (0,1 and Either  ¢[1n =y

9¢

% =n-v

Fast Fourier Transform + semi-implicit finite difference method

or



Layer : the contour map of ¢

smectic iquid Fixed layers on the boundaries; The analysis predicts that £° ~ x/h ~ 0.125
crystals and the wave number ~ 8 when h = 25, L = 100.
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J—— Fixed layers on the boundaries; The analysis predicts that x° ~ 7 /h ~ 0.125
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Current/Future work

smectic liquid
crystals

m Extension to Smectic C
m 3d extension - numerical simulation

Senyuk, Smalyukh, and Lavrentovich,
PRE 2006

m Beyond the critical field

Current/Future

32
work 30 ] R
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m Q tensor and smectic order parameter
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