
smectic liquid
crystals

Joo

Introduction to
Liquid Crystals

Layer undulations
in Smectic A
Helfrich-Hurault

Model

Γ-Convergence

Fixed layers

General case

Bifurcation analysis
and Stability

Numerical
simulations

Current/Future
work

Mathematical Continuum theories of
Smectic Liquid Crystals

Sookyung Joo

Department of Mathematics and Statistics
Old Dominion University

ODU
Math & Stat Club

October 2010



smectic liquid
crystals

Joo

Introduction to
Liquid Crystals

Layer undulations
in Smectic A
Helfrich-Hurault

Model

Γ-Convergence

Fixed layers

General case

Bifurcation analysis
and Stability

Numerical
simulations

Current/Future
work

Outline

1 Introduction to Liquid Crystals

2 Layer undulations in Smectic A
Helfrich-Hurault
Model
Γ-Convergence

Fixed layers
General case

Bifurcation analysis and Stability
Numerical simulations

3 Current/Future work



smectic liquid
crystals

Joo

Introduction to
Liquid Crystals

Layer undulations
in Smectic A
Helfrich-Hurault

Model

Γ-Convergence

Fixed layers

General case

Bifurcation analysis
and Stability

Numerical
simulations

Current/Future
work

Liquid crystals

An intermediate phase between fluid and solid (orientationally
ordered soft matter)

Calamitic liquid crystals (rod like molecules)

n

Arrangement of molecules in a
solid crystal

Arrangement of molecules in a
liquid

Arrangement of molecules in a
liquid crystal

Molecular director n : average molecular orientation, |n| = 1
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Nematic Energy

Frank elastic energy density for nematic LC

fn =K1(∇ · n)2 +K2(n · ∇ × n)2 +K3|n× (∇× n)|2

+ (K2 +K4)(tr(∇n)2 − (∇ · n)2)

K1 : splay, (nr, nθ, nz) = (1, 0, 0)

K2 : twist, (nx, ny, xz) = (cosφ(z), sinφ(z), 0)

K3 : bend, (nr, nθ, nz) = (0, 1, 0)

TwistSplay Bend

The last term is null-Lagrangian;

tr(∇n)2 − (∇ · n)2 = div[(∇n)n− (divn)n]

It depends only on the restriction of n and its tangential gradient
to the boundary ∂Ω.
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Cholesteric liquid crystals

One constant approximation: K1 = K2 = K3 =
K

2
> 0, K4 = 0

fn =
K

2
|∇n|2.

Cholesteric liquid crystals (Chiral nematics, N*)

fn∗ =K1(∇ · n)2 +K2(n · ∇ × n + τ)2 +K3|n× (∇× n)|2

+ (K2 +K4)(tr(∇n)2 − (∇ · n)2)

fn∗(nτ ) = 0, where nτ (x) = (cos(τz), sin(τz), 0).

dye & piements
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Boundary conditions

Strong anchoring condition (Dirichlet Boundary condition)
Weak anchoring condition : add Rapini-Popoular surface
energy

FS = c

∫
∂Ω

(n · e)2

If c < 0, n tends to be ‖ to e, e is an easy axis.
If c > 0, n tends to be ⊥ to e

Theorem (Hardt, Kinderlehrer, Lin)

Assume that ∂Ω is a smooth surface, n0 is smooth, and
K1,K2,K3 > 0. Then there is a minimizer of Fn in the class

A = {n : Ω→ S2,n|∂Ω = n0,

∫
Ω

|∇n|2 <∞}
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Defect

n(x) may have singularities, eg, n1 = er : line singularity
n1 satisfies Euler equation associated with the OF energy.

But,
∫
C
|∇n1|2 =∞ where C is a cylinder. What is wrong?

Oseen-Frank theory is limited: it can only account for point
defects but not the more complicated line and surface
defects.
Ericksen theory: the state of the liquid crystal is described by
a pair, (s, n) ∈ R× S2, where s is a real scalar order
parameter that measures the degree of orientational
ordering. ∫

Ω

s(x)2|∇n|2 + k|∇s|2

where k is a material constant. This theory can account for
all physically observable defects, but is restricted to uniaxial
liquid crystal materials.
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Landau-de Gennes theory

This theory can account for both uniaxial and biaxial phases.
The state of a nematic liquid crystal is modelled by a
symmetric, traceless 3× 3 matrix Q , known as the Q-tensor
order parameter.

Isotropic phase when Q = 0

Uniaxial phase when Q = s(n⊗ n− 1

3
I)

Biaxial phase when Q = s(n⊗ n− 1

3
I) + r(m⊗m− 1

3
I)

f = fe + fb where

fe =
L

2
|∇Q|2

fb = a tr(Q2)− b tr(Q3) + c tr(Q4)
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Frederiks effect : Splay geometry

H

z=d

z=−d
H < Hc H > Hc

f = fn −
χa
2

(n ·H)2

Special class of minimizers: n = cos θ(z)e1 + sin θ(z)e3

Hc =
π

2d

√
2K1

χa
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Smectic Liquid Crystals

Nematic phase : Orientational order
Smectic phase : Orientational + 1d Positional order (layer)

Smectic A : molecules are perpendicular to the layers
Smectic C : molecules are tilted w.r.t. the layer normal

Phase transitions
Liquid←− Nematic←− Smectic←− Solid
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Order parameter of Smectic phases

Order parameter Ψ = ρeiqφ

δ(x) = ρ0 +
1

2
(Ψ(x) + Ψ∗(x)) = ρ0 + ρ cos(qφ) : mass density

where ρ0: locally uniform molecular mass density

NEMATIC PHASE IF THE MINIMIZER Ψ ≡ 0.

φ : layer position (∇φ : layer normal)



smectic liquid
crystals

Joo

Introduction to
Liquid Crystals

Layer undulations
in Smectic A
Helfrich-Hurault

Model

Γ-Convergence

Fixed layers

General case

Bifurcation analysis
and Stability

Numerical
simulations

Current/Future
work

Smectic A free energy density

f = fn + fA

deGenne energy

fA =
C

2
|∇Ψ− iqnΨ|2 +

g

2
(|Ψ|2 − 1)2

Assuming that Ψ = ρeiϕ, fA becomes

fA = |∇ρ|2 + ρ2|∇ϕ− qn|2 +
g

2
(ρ2 − 1)2

level sets of ϕ are layers, ∇ϕ ‖ n, and q ≈ |∇ϕ|
|∇ρ|2 penalizes the phase transition.

ρ = 1 : smectic phase.
ρ = 0 : nematic phase
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Free energy density for chiral smectic C LCs

Modified CHEN-LUBENSKY ENERGY by I.Luk’yanchuk ’98

f = fn∗+fs = fn∗+D|D2
nΨ|2−C⊥|DnΨ|2+C‖|n·DnΨ|2+r|Ψ|2+

g

2
|Ψ|4,

where Dn = ∇− iqn, D2
nΨ = Dn ·DnΨ.

Chiral Smectic C liquid crystal (SmC*)

C.J. Barrett, barrett-group.mcgill.ca
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Sign of C⊥

Assuming that Ψ = eiϕ, (away from the phase transition),

fs = D|∇ϕ−qn|4+D(∆ϕ−q∇·n)2−C⊥|∇ϕ−qn|2+C‖(n·∇ϕ−q)2

deGenne energy

C⊥ < 0 : ∇ϕ = qn ⇒ ∇ϕ ‖ n ⇒ SM A

de Genne energy for Sm A: fs = −C⊥|∇ϕ− qn|2

C⊥ > 0 : n · ∇ϕ = q, |∇ϕ− qn|2 =
C⊥
2D
⇒ tan2 α =

C⊥
2Dq2

,

where α is the tilt angle between the layer normal and the
director. ⇒ SM C
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Phase transition from N* toward chiral smectic LCs

[Joo and Phillips, Comm. Math. Phys. 2007] Phase transition between chiral
nematic and smectics: Characterize r̄ and r as a function of qτ for
which

r > r̄ implies the minimizer Ψ ≡ 0⇒ Chiral Nematic
r < r implies the minimizer Ψ ≡/ 0⇒ Chiral Smectic

N* − A* transition

q τ

r

C
⊥
/D

N*

A*

r=r(q τ)
__

r=r(q τ)__

0 0 

N*−C* transition

q τ

r

r=r
s
(q τ)

r=r
m

(q τ)

r=r
b
(q τ)

N*

r=r
s
(q τ)

r=r
b
(q τ)

C*

C⊥/D

C⊥
2/4D

−

−
−

−
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Layer Undulations (Helfrich-Hurault effect) in Smectic A

−h

h

−h

H

h

z

x

cH > HcH < H

undeformed state (pure smectic state): φ0 = z,n0 = (0, 1)

experiment with Cholesteric LCs

(c) Ishikawa and Lavrentovich, PRE 2001
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Layer Undulations (Helfrich-Hurault effect) in Smectic A

−h

h

−h

H

h

z

x

cH > HcH < H

undeformed state (pure smectic state): φ0 = z,n0 = (0, 1)
experiment with Cholesteric LCs

(d) Ishikawa and Lavrentovich, PRE 2001
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Helfrich-Hurault theory

Set φ = z − u(x, z) where u is the small displacement.

z

x

u(x,z)

Layer displacement : u(x,z)

Setting n ≈ (−ux, 1), & strong anchoring

F =
K

2
(uxx)2 +

B

2
(uz)

2 − χaσ
2

2
(ux)2

Look for a solution of type u(x, z) = u0 cos(kzz) sin(kx) for
z ∈ (−h/2, h/2) and find

χaσ
2
c =

πK1

λh
, k2 =

π

λh
, kz =

π

h

where λ =
√
K/B.
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Helfrich-Hurault theory vs. Experiment

result

In the experiment... Lavrentovich et al, PRE (2001, 2006)

The lower critical field of undulation instability
Larger layers’ displacement
The displacement of layers immediately adjacent to the
bounding plates is nonzero.
Weakened dependence of the layer shape on the vertical z-
coordinate when the field increases well above the threshold.
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Smectic A free energy - de Gennes

Free energy

G(ψ,n) =

∫ (
C|∇ψ − iqnψ|2 +K|∇n|2 +

g

2
(|ψ|2 − 1)2 − λ(n ·H)2

)
dxdy

Ω = (−L,L)× (−d, d)

Undeformed state : (ψ0, θ0) ≡ (c̃eiqy, 0) is a trivial critical point of G
where c̃ ∈ C such that |c̃| = 1.

Setting n = (sin θ, cos θ),

1

2

d2

dt2
G(ψ0 + tψ, tθ)

∣∣∣
t=0

=

∫
Ω

(C|ψx − iqθψ0|2 + C|ψy − iqψ|2

+K|∇θ|2 + 2g[Re(ψ0ψ̄)]2 − λ|θ|2) dxdy

=: L(ψ, θ)− λ
∫

Ω

|θ|2 dxdy
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Stability of undeformed state

Critical field
λc = inf

(ψ,θ)∈A
L(ψ, θ)

where the admissible set A is given by

A = {(ψ, θ) ∈ H1(U)×H1(U) : ‖θ‖L2(U) = 1, θ(x,±d) = 0 for all x,

U = R/(−L+ 2LZ)× (−d, d).
i.e., periodic boundary condition in the x direction.

If λ ≤ λc ⇒ the undeformed state is stable.
If λ > λc ⇒ the undeformed state is unstable.
Stable bifurcation is possible at λ = λc.
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Reformulation

Set ψ = iqψ0ϕ. Then

L = Cq2|ϕx − θ|2 + Cq2|ϕy|2 +K|∇θ|2 + 2g[−q=(ϕ)]2

We may assume that ϕ is a real- valued function. Introducing
x = xold/d, y = yold/d, and ϕ = ϕold/d,

L(ψ, θ) =
K

ε

∫
D

( (ϕx − θ)2

ε
+
ϕ2
y

ε
+ ε|∇θ|2 − σθ2

)
dx dy

where D = (−c, c)× (−1, 1), ε =

√
K

qd
√
C
� 1, and σ =

dλ

q
√
CK

.

Theorem (Garcia-Cervera, Joo)

σc = O(1) for ε� 1.
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Fourier series

Represent θ and φ by their Fourier series,

θ(x, y) =

∞∑
n=−∞

θn(y)eiµnx and ϕ(x, y) =

∞∑
n=−∞

ϕn(y)eiµnx

where µn = 2πn/c, then the energy becomes

L(ϕ, θ) = 2c
∞∑

n=−∞

∫ 1

−1

(ε|θ′n|2 + δ|θn|2 +
1

ε
|θn − φn|2 +

1

δ
|ϕ′n|2) dy.

=: 2c

∞∑
n=−∞

Fε(φn, θn, δ)

where δ = εµ2
n and φn = iµnϕn. Then one can see that

σc = inf
n
σn = inf

n
inf

(ϕ,θ)∈B
Fε(ϕ, θ, n),

where

B = {(ϕ, θ) ∈ H1
0(−1, 1)×H1(−1, 1) :

∫ 1

−1

|θ(y)|2 dy = 1}.
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Problem

Fε(θ, ϕ, δ) :=


∫
I

(εθ′2 +
1

δ
ϕ′2 + δθ2 +

1

ε
(θ − ϕ)2) dy if (θ, ϕ, δ) ∈ X

∞ else

Γ-Convergence

One can see that Fε(θ, ϕ, δ) = Fε(−θ,−ϕ, δ) and a minimizer is either
positive or negative in I.

Thus we define

Xn = {(θ, ϕ, δ) ∈W 1,2
0 (I)×W 1,2(I)× R : [θ] ≡

∫
I

θ ≥ 0 in I}

Xd = {(θ, ϕ, δ) ∈ Xn : ϕ ∈W 1,2
0 (I)}.

We look for a minimizer of Fε for X = Xd (Fixed layers at the boundary)
or X = Xn (general case) with the constraint∫

I

|θ(y)|2 dy = 1.
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Problem

Fε(θ, ϕ, δ) :=


∫
I

(εθ′2 +
1

δ
ϕ′2 + δθ2 +

1

ε
(θ − ϕ)2) dy if (θ, ϕ, δ) ∈ X

∞ else

Γ-Convergence

One can see that Fε(θ, ϕ, δ) = Fε(−θ,−ϕ, δ) and a minimizer is either
positive or negative in I. Thus we define

Xn = {(θ, ϕ, δ) ∈W 1,2
0 (I)×W 1,2(I)× R : [θ] ≡

∫
I

θ ≥ 0 in I}

Xd = {(θ, ϕ, δ) ∈ Xn : ϕ ∈W 1,2
0 (I)}.

We look for a minimizer of Fε for X = Xd (Fixed layers at the boundary)
or X = Xn (general case) with the constraint∫

I

|θ(y)|2 dy = 1.
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Γ-Convergence

Underlying method: the study of complex minimum problems
involving a (small) parameter ε is approximated by a minimum
problem where the dependence on this parameter has been
averaged out.

The notion of Γ-convergence of energies is designed to
guarantee the convergence of minimum problems; i.e.,

Fε
Γ−→ F0 ⇒ minFε := mε → m0 := minF0.

and (almost) minimizers of min Fε converge to minimizers of F0.

(Note: compactness of minimizers is given for granted)
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Definition of Γ-Convergence

{Fε} Γ-converges to F (Fε
Γ−→ F0)if

1 (Lower bound inequality) F (u) ≤ lim inf
ε→0

Fε(uε) if uε → u

2 (Existence of recovery sequences) for all u there exists
uε → u such that F (u) = lim

ε→0
Fε(uε).

This convergence has been introduced by De Giorgi in the 1970s.

(Compactness) Given {uε} such that Fε(uε) is uniformly
bounded, then {uε} is relatively compact.

Then every minimizing sequence admits a subsequence
approximating a solution of the problem

min{F (u)}.
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Plan - fixed layers on the boundary

1 Show Γ-convergence and compactness

F dε (θ, ϕ, δ)
Γ−→ F d0 (θ, ϕ, δ) Fε

:=

{∫
I
(δθ2 + 1

δ
θ′2) dy if θ = ϕ ∈W 1,2

0 (I), [θ] > 0

∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = π
2
, θ0(y) = ϕ0(y) = cos π

2
y

The minimum value of F d0 is π.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).



smectic liquid
crystals

Joo

Introduction to
Liquid Crystals

Layer undulations
in Smectic A
Helfrich-Hurault

Model

Γ-Convergence

Fixed layers

General case

Bifurcation analysis
and Stability

Numerical
simulations

Current/Future
work

Plan - fixed layers on the boundary

1 Show Γ-convergence and compactness

F dε (θ, ϕ, δ)
Γ−→ F d0 (θ, ϕ, δ) Fε

:=

{∫
I
(δθ2 + 1

δ
θ′2) dy if θ = ϕ ∈W 1,2

0 (I), [θ] > 0

∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = π
2
, θ0(y) = ϕ0(y) = cos π

2
y

The minimum value of F d0 is π.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).
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Layer undulations - fixed layers on the cell boundaries

Theorem (Garcia-Cervera and Joo)

Let (θ, ϕ, δ) ∈ Xd be a minimizer of F dε constrained by∫
I

|θ|2 dy = 1. For ε = 1/h� 1, we have

µ2/h ≈ π

2
, F dε ≈ π, and

∫
I

|ϕ(y)− cos
π

2
y|2 dy � 1.

The frequency of the oscillation is µ/2π = 1/(2
√

2πh).

The critical field is given by κ0
c ≈

π

h
.

The maximum undulation occurs in the middle of the cell
(y = 0) and the displacement amplitude decreases as
approaching the boundary (y = ±h).

The results are consistent with the result found in the classic Helfrich-Hurault
theory.
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Theorem (Garcia-Cervera and Joo)

Let (θ, ϕ, δ) ∈ Xd be a minimizer of F dε constrained by∫
I

|θ|2 dy = 1. For ε = 1/h� 1, we have
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, F dε ≈ π, and

∫
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2
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The frequency of the oscillation is µ/2π = 1/(2
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2πh).

The critical field is given by κ0
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.

The maximum undulation occurs in the middle of the cell
(y = 0) and the displacement amplitude decreases as
approaching the boundary (y = ±h).

The results are consistent with the result found in the classic Helfrich-Hurault
theory.
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Layer undulations - fixed layers on the cell boundaries

Theorem (Garcia-Cervera and Joo)

Let (θ, ϕ, δ) ∈ Xd be a minimizer of F dε constrained by∫
I

|θ|2 dy = 1. For ε = 1/h� 1, we have

µ2/h ≈ π

2
, F dε ≈ π, and

∫
I

|ϕ(y)− cos
π

2
y|2 dy � 1.

The frequency of the oscillation is µ/2π = 1/(2
√

2πh).

The critical field is given by κ0
c ≈

π

h
.

The maximum undulation occurs in the middle of the cell
(y = 0) and the displacement amplitude decreases as
approaching the boundary (y = ±h).

The results are consistent with the result found in the classic Helfrich-Hurault
theory.
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General case: Layers are not fixed on the boundary

Fnε (θ, ϕ, δ) :=


∫
I

(εθ′2 +
1

δ
ϕ′2 + δθ2 +

1

ε
(θ − ϕ)2) dy if (θ, ϕ, δ) ∈ Xn

∞ else

We look for a minimizer of Fnε with the constraint∫
I

|θ(y)|2 dy = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1
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phi

(e) configuration of minimizer of Fnε
with ε = 0.01, δ = 0.01
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General case: Layers are not fixed on the boundary

Fnε (θ, ϕ, δ) :=


∫
I

(εθ′2 +
1

δ
ϕ′2 + δθ2 +

1

ε
(θ − ϕ)2) dy if (θ, ϕ, δ) ∈ Xn

∞ else

We look for a minimizer of Fnε with the constraint∫
I

|θ(y)|2 dy = 1.
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(f) configuration of minimizer of Fnε
with ε = 0.01, δ = 0.01
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Plan: general case

1 Show Γ-convergence and compactness

Fnε (θ, ϕ, δ)
Γ−→ Fn0 (θ, ϕ, δ)

:=


∫
I
(δθ2 + 1

δ
θ′2) dy + θ(1)2 + θ(−1)2

if δ 6= 0, θ = ϕ ∈W 1,2(I), [θ] > 0

θ(1)2 + θ(−1)2 if δ = 0, θ = ϕ = constant
∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = 0, θ0(y) = ϕ0(y) = 1√
2

The minimum value of Fn0 is 1.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).
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Plan: general case

1 Show Γ-convergence and compactness

Fnε (θ, ϕ, δ)
Γ−→ Fn0 (θ, ϕ, δ)

:=


∫
I
(δθ2 + 1

δ
θ′2) dy + θ(1)2 + θ(−1)2

if δ 6= 0, θ = ϕ ∈W 1,2(I), [θ] > 0

θ(1)2 + θ(−1)2 if δ = 0, θ = ϕ = constant
∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = 0, θ0(y) = ϕ0(y) = 1√
2

The minimum value of Fn0 is 1.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).
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Plan: general case

1 Show Γ-convergence and compactness

Fnε (θ, ϕ, δ)
Γ−→ Fn0 (θ, ϕ, δ)

:=


∫
I
(δθ2 + 1

δ
θ′2) dy + θ(1)2 + θ(−1)2

if δ 6= 0, θ = ϕ ∈W 1,2(I), [θ] > 0

θ(1)2 + θ(−1)2 if δ = 0, θ = ϕ = constant
∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = 0, θ0(y) = ϕ0(y) = 1√
2

The minimum value of Fn0 is 1.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).
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Plan: general case

1 Show Γ-convergence and compactness

Fnε (θ, ϕ, δ)
Γ−→ Fn0 (θ, ϕ, δ)

:=


∫
I
(δθ2 + 1

δ
θ′2) dy + θ(1)2 + θ(−1)2

if δ 6= 0, θ = ϕ ∈W 1,2(I), [θ] > 0

θ(1)2 + θ(−1)2 if δ = 0, θ = ϕ = constant
∞ else

2 The Γ-limit has a unique
minimizer, (θ0, ϕ0, δ0) ;

δ0 = 0, θ0(y) = ϕ0(y) = 1√
2

The minimum value of Fn0 is 1.

3 The sequence of minimizers (θε, ϕε, δε) converges to (θ0, ϕ0, δ0).
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Γ-Convergence : Lower semi-continuity

Lemma (Garcia-Cervera and Joo)

For every (θ, ϕ, δ) ∈ [L2(I)]2 × R and every sequence (θj , ϕj , δj) ∈ Xn
such that (θj , ϕj , δj) converges to (θ, ϕ, δ) in [L2(I)]2 × R there holds

lim inf
j→∞

Fnεj (θj , ϕj , δj) ≥ Fn0 (θ, ϕ, δ),

with θ ∈W 1,2(I) and ϕ ∈W 1,2(I).

Proof.

Modify the proof for Allen-Cahn functional with Dirichlet boundary condition.
[N.C. Owen, J. Rubinstein and P. Sternberg, Proc. R. Soc. Lond. A, 1990]
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Γ-convergence : upper bound inequality

Lemma (Garcia-Cervera and Joo)

For any (θ, ϕ, δ) ∈ Xn with
∫
I

|θ|2 dz = 1 and θ = ϕ, there exists a

sequence (θj , ϕj , δj) ∈W 1,2
0 (I)×W 1,2(I)× R with

∫
I

|θj |2 dz = 1,

converging in [L2(I)]2 × R as j →∞, to (θ, ϕ, δ), and such that

lim sup
j→∞

Fnεj (θj , ϕj , δj) = Fn0 (θ, ϕ, δ).

Take ϕε = ϕ and δε = δ

For θε;
Construct the boundary layer ρε(y) from singular perturbation.

Normalization: θε(y) =
ρε(y)

‖ρε‖L2(I)

.
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Layer Undulations

Theorem (Garcia-Cervera and Joo)

Let (θ, ϕ, δ) ∈ Xn be a minimizer of Fnε constrained by∫
I

|θ|2 dy = 1. For ε = 1/h� 1, we have∫
I

|ϕ(y)− 1√
2
|2 dy � 1, Fnε ≈ 1 and µ2/h ≈ 0.

experiment

Undulations immediately adjacent to the boundary appear.
Weak dependence of the layer shape on the z- coordinate.

The critical field is given by κc ≈
1

h
, lower than κ0

c ≈
π

h
.

Larger undulation displacement,
1

µn
φ(y) from εµ2

n ≈ 0.

Bifurcation
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Bifurcation from simple eigenvalue

Assumption
X,Y are Banach spaces.
F : X × R→ Y,C2. (F (u, λ) = 0: Euler equation)
L := Fx(0, λ) has a simple eigenvalue. (L : the second
variation of the energy at a critical point)

Check general criteria given by Crandall and Rabinowitz.
(i) KerL =< x0 >
(ii) RangeL = Y1 has codimension 1. (If L:self-adjoint, (i)⇒ (ii))
(iii) Fλx(0, λ0)x0 /∈ Y1.

Then there is a bifurcating curve {(x(s), λ(s)) : |s| < s0} of
zeroes of F intersecting (0, λ) only at (0, λ0).
There are eigenvalues and eigenvectors

Fx(x(s), λ(s))ω(s) = µ(s)ω(s) and Fx(0, λ)u(λ) = γ(λ)u(λ)

From
dx

dt
= F (x, λ), stability of equilibrium solution

(x(s), λ(s)) is determined by the sign of µ(s).
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Example: ∆u− u3 + λu = 0

Consider F (u, λ) = ∆u− u3 + λu.
u = 0 is a solution for all λ.
Fu(0, λ) = ∆u+ λu =: Lu has a simple first eigenvalue, λ0

and corresponding eigenfunction u0. i.e., KerL =< u0 >.
Since L is a self-adjoint operator, KerL = (RangeL)⊥. Thus,
codimension of the range of Fu(0, λ) is 1.
Fuλ(0, λ0) = u0, but u0 ⊥ rangeL
From the theory of Crandall and Rabinowitz, (0, λ0) is a
bifurcating point and there is an analytic family of solutions

(u(s), λ(s)) = (su0 + s2u2(s), λ0 + sλ2(s))

We can further prove that λ(0) = λ′(0) = 0 and

λ
′′
(0) = 2

∫
u4

0 > 0. ⇒ Supercritical pitchfork bifurcation!
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Example continued: ∆u− u3 + λu = 0

u

λ

λ0
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Eigenvalue problem : formal asymptotic expansion

Result from Γ-Convergence

The frequency of the oscillation is smaller than O(h−1/2) from
εµ2

n ≈ 0.

But, what is the frequency?

Standard process for eigenvalue problem
Formal asymptotic expansion for the derived algebraic
equation
Use results from Γ-convergence theory
The minimizer of Fε is obtained; As ε→ 0,

δ = ε(2π/c)2 +O(ε) and
λ = 1 + (1/2 + 2/3(2π/c)2)ε+O(ε2).

When c = L/h = 4, the wave number is 2.
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Linearized problem: simple eigenvalue

For σ = σc, except for a discrete set of the domain sizes, the
linearized problem

ε∆θ +
1

ε
ϕx −

1

ε
θ + σθ = 0

∆ϕ− θx = 0

has a solution set spanned by {θn(y) cosµnx, ϕn(y) sinµnx} for
some n.
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Bifurcation curve

Euler-Lagrange equations: for ψ = u+ iv, z = (u, v, θ)

F1(z, λ) = C[∆u+ 2q(sin θvx + cos θvy) + q(cos θθx − sin θθy)v

−q2u] + g(1− u2 − v2)u = 0,

F2(z, λ) = C[∆v − 2q(sin θux + cos θuy)− q(cos θθx − sin θθy)u

−q2u] + g(1− u2 − v2)v = 0,

F3(z, λ) = K∆θ + Cq[cos θ(uvx − vux)− sin θ(uvy − vuy)]

+λ sin θ cos θ = 0.

Theorem (existence and stability)

There is an r > 0 and bifurcation curve of solutions to the system for
s ∈ (−r, r),

ψ = ψ0 + sψ1 +O(s3), θ(s) = s2θ1 +O(s4), and λ(s) = λ0 +O(s2).

Furthermore, the system has only two solutions z0 = (ψ0, 0) and
(z(s), σ(s)) and the nontrivial solution is stable in a sufficiently small
neighborhood of (z0, λc).
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Numerical scheme for de Genne energy

Gradient flow

∂φ

∂t
= ∆φ−∇ · n

∂n

∂t
= −n× (n× (∆n +∇φ− n + κ(n · h)h)) .

where n× (n× δG

δn
) in the second equation appears as a result of

the constraint |n| = 1. Boundary conditions on the top and bottom
plates:

n = (0, 1) and Either φ|±h = y

or
∂φ

∂ν
= n · ν

Fast Fourier Transform + semi-implicit finite difference method
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Layer : the contour map of ϕ

Fixed layers on the boundaries; The analysis predicts that κ0
c ∼ π/h ∼ 0.125

and the wave number ∼ 8 when h = 25, L = 100.
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General case; The analysis predicts that κc ∼ 1/h ∼ 0.09 and the wave number is 2
when h = 12.5, L = 50.
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Current/Future work

Extension to Smectic C
3d extension - numerical simulation

Senyuk, Smalyukh, and Lavrentovich,
PRE 2006

Beyond the critical field

Q tensor and smectic order parameter
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