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Medical Applications
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How Owl Catch Mouse?
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Owl — Quiet UAV
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Owl — Quiet UAV, Car
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Owl — Quiet UAV, Car, and Airplane

Copyright © David James Clelfor - Airplane-Pictures.net
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How Dolphin Swim and Swim Fast?
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Dolphin — Speedo Swimsuit
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Dolphin — Speedo Swimsuit and Submarine
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Weather Prediction
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Weather Prediction
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Big Bang, Cosmology
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Big Bang, Cosmology
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Navier-Stokes Equations: Continuum Theory

Conservation laws of mass, momentum, and energy:

op+V-pu=0 (1a)
pou + pu-Vu = —V-P (1b)
poe + pu-Ve =—P:Vu—V-.q (1c)

2
Paﬁ = p(sag — <(9QU5 -+ agua — 35agv-’u> — C(Sagv-u
q=—rVT, e=¢eT), p=ppT)
Dimensionless Navier-Stokes equations (similarity law):

e 2vp+R—v S (2a)

1
V. —VQT —S:V 2
pV-u + > + ReS U (2b)

pou + pu-Vu = —

p({?te +puV€ = —W

a = (v —1)PrMaRe
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Microscopic Scale
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qr = 87%, Pk = *aiqk
H=yPHINR2  y
i = H’z,,r
= fﬁz\ V24V
o2m—I=1"7

h~6.62-1073*(J -s)
c~2.99-10%(m/s)
a~5-107 (m)

tq ~ 2.41-10717(s)

m ~ 107" (kg)
N=1,2,..., N

Mesoscopic Scale

0f +69f = Q. f)
f — f(wa 'E: t)
e=Kn= %, Ma = C_(Z
kp ~ 1.38-1072(J/°K)
(~10% - 103 (A)

~ 10 — 100 (nm)
T~ 10710(s)
¢s ~ 300 (m/s)

N>1
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Macroscopic Scale
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In the Course of Hydrodynamic Events ...

Ma (Mach) and Kn (Knudsen) characterize nonequilibrium

Van Karmen relation based on Navier-Stokes equation (Kn=0(¢)): Ma=Re-Kn

I Re<1 \ Real \ Re1
Stokes Flows Incompressible Navier-Stokes Flows
Mak1
Ma=0(e?), Re=0(¢) Ma=0(g), Re=0(1) Ma=0(e!~%), Re=0(¢~%)
Sub/Transonic Flows
Max1
Ma=0(1), Re=0(s~1)
Mas1 Super/Hypersonic Flows
Ma=0(e~ 1), Re=0(e~2)
With the framework of kinetic theory (Boltzmann equation)
Hydrodynamics Slip Flow Transitional Free Molecular
Kn<1073 1073<Kn<10~1! 10~ '<Kn<10 10<Kn
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Evolution of LGA: R

An intuitive system of fictitious particles on a Lattice

Evolution from ¢ (solid arrows) to ¢t + 1 (hollow arrows): FHP-LGA Collision Rules
Input State
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Collision Table for 6-Velocity FHP Model

FHP-LGA Collision Rules Binary Representation of FHP LGA Collision Rules
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Input State
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Why should LGCA work?

“We have noticed in nature that the behavior of a fluid depends very
little on the nature of the individual particles in that fluid. For
example, the flow of sand is very similar to the flow of water or the
flow of a pile of ball bearings. We have therefore taken advantage of
this fact to invent a type of imaginary particle that is especially simple
for us to simulate. This particle is a perfect ball bearing that can move
at a single speed in one of six directions. The flow of these particles on
a large enough scale is very similar to the flow of natural fluids.”

— Richard P. Feynman (1918 — 1988)
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ODU Research: Complex Bio-Fluids, Lab-on-a-Chip

e Prof. S. Qian et al. (Dept. of Mech. & Aerospace Eng.):
Experiments (MEMS) to separate particles by size or charge;

e Prof. Y. Peng et al. (Dept. of Math. & Stat.):
Simulations of a particle moving in sediment or in a channel.
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Gas Flow in MEMS: What’s the problem?

The scales in this problem:
e Device size: 107%m = 1pm
The mean-free-path of air: 70 - 10™m = 70nm
The effective air molecular diameter: o ~ 3-107"%m = 0.1nm
Typical hydrodynamic time scale: 1073s — 10~
@ To consider molecule-surface interaction, one must use Molecular
Dynamics (MD) simulations. Typical time step size for MD:

7~ oy/m/e~1071%s = 1ps
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Gas Flow in MEMS: A Possible Solution

e Not to directly couple MD and CFD!
e Use MD to compute the mean-field potential near the wall;

e Use kinetic schemes to include the mean-field potential obtained
from the MD;

The goal is to drastically reduce computational time.
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ODU Research: Hypersonic Rarefied Gas Flow

Mars Entry Vehicle

Bow shock —,
A Flow separation

EBoumdany .~ /' —Shear layer
layer y !

Viscous —, — Transition to turbulent

interaction \\ \ j ,_/~ Impingement (reattachment)

Surface \\

recombination —.__

Radiation ——

—

Dissociation-
ionization s
(thermochemical _——Reaction
non equilibrium} 5 control

plumes

Transition to
turbulent

Ablation
— Control

Shock-shock interaction surface

Luo (Math Dept, ODU) Hydrodynamics

26 / 33



Hypersonic Rarefied Gas Flow

The hypersonic rarefied gas flows are strongly nonequilibrium:

e Large Ma: strong and complex shock-shock and shock-boundary
layer interactions;

e Large Kn: Navier-Stokes equations no longer valid;
Established method for nonequilibrium flows:

e Direct Monte Carlo simulations (DSMC), a stochastic method;

@ Deterministic solution methods of the Boltzmann equation.

Our strategy: kinetic methods — Extending the Navier-Stokes
equations based on the Boltzmann equation.
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Hypersonic Rarefied Gas Flow: Shock at Ma = 8.0

The gas-kinetic scheme based on the Boltzmann equation can
accurately and efficiently predict shock thickness (about a few
mean-free paths), the stress and heat flux across a shock.
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A New Direction: Energy Storage

Selected Energy Densities
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'w Direction: Energy Storage

Nanoporous energy absorption system (NEAS), e.g., silica nanoporous
material:

o Porosity 30% ~ 90%, high specific pore area > 1,000 (m?/g)

e Extremely high specific energy absorption: > 140.0 (J/g),
compared to Li-Battery ~ 2,500 (J/g), TNT ~ 4,610 (J/g),
gasoline ~ 46,400 (J/g).
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Fig 4 (a) SEM microscopy of the mesoparous silica particles; (b) TEM microscopy of
the particle surface; (c) the mesoporous stractare (Terasaki | et al | 2002).
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Conclusions

Why hydrodynamics?
o Interesting — involving modeling (PDE) of multi-physics and
multi-scale problems;
o Useful — wide variety of applications;

e Challenging — many difficult problems remained solved.
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Other Applications

e Ladd, Univ. Florida: Cluster of 1812 particles
e Flow through Porous Media (Krafczyk et al., TUB):

e Air through fluids in a packed-sphere bio-filter
e Multi-component flow past porous media: imbibe, drain, re-imbibe

Free-Surface Flow (Krafczyk et al., TUB):

o A single drop impact on a liquid surface
e Flow coming down from a dam

o Flow past through/over a bridge

e Flow interacts with a column

Droplet collision (Frohn et al., Univ. Stuttgart):

e Merge, Separate, and one extra; LBE vs. Experiment.

More (Thiiry et al., Univ. Erlangen):

e Bubbles rising in water tank
e Metal foams
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Questions?

~ "You WANT proor?
'u. GIVE You PROOF!"
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