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Background

Natural, artificial and biological capsules and cells abound in
nature, biology and technology.
Desirable properties:

Ability to deform and accommodate the shapes of capillaries and
microchannels
Ability to withstand the shearing action of an imposed flow
Capacity to transport materials in a protect way and release it in a
timely fashion

Fundamental research is necessary: The flow-induced deformation
of liquid capsules in simple shear flow.
Difficulties:

Deformable
Strong fluid-structure interaction
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A Priori Derivation of Lattice Boltzmann Equation

The Boltzmann Equation with BGK approximation:

∂tf + ξ ·∇f =
∫

[f ′1f
′
2 − f1f2]dµ ≈ − 1

λ
[f − f (0)] , f ≡ f(x, ξ, t) . (1)

The Boltzmann-Maxwellian equilibrium distribution function:

f (0) = ρ (2πθ)−D/2 exp
[
−(ξ − u)2

2θ

]
, (2)

The macroscopic quantities are the hydrodynamic moments of f or
f (0):

ρ =
∫
fdξ =

∫
f (0)dξ , (3a)

ρu =
∫

ξfdξ =
∫

ξf (0)dξ , (3b)

ρε =
1
2

∫
(ξ − u)2fdξ =

1
2

∫
(ξ − u)2f (0)dξ . (3c)

Peng (Math Dept, ODU) LBE Nov 30, 2010 4 / 22



Integral Solution of Continuous Boltzmann Equation

Rewrite the Boltzmann BGK Equation in the form of ODE:

Dtf +
1
λ
f =

1
λ
f (0) , Dt ≡ ∂t + ξ ·∇ . (4)

Integrate Eq. (4) over a time step δt along characteristics:

f(x + ξδt, ξ, t+ δt) = e−δt/λ f(x, ξ, t) (5)

+
1
λ
e−δt/λ

∫ δt

0
et

′/λ f (0)(x + ξt′, ξ, t+ t′) dt′ .

By Taylor expansion, and with τ ≡ λ/δt, we obtain:

f(x + ξδt, ξ, t+ δt)− f(x, ξ, t) = −1
τ
[f(x, ξ, t)− f (0)(x, ξ, t)] +O(δ2t ) .

(6)
Note that a finite-volume scheme or higher-order schemes can also be
formulated based upon the integral solution.
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Passage to Lattice Boltzmann Equation
Three necessary steps to derive LBE:1,2

1 Low Mach number expansion of the distribution functions;
2 Discretize ξ-space with necessary and min. number of ξα;
3 Discretization of x space according to {ξα}.

Low Mach Number (u ≈ 0) Expansion of the distribution functions f (0)

and f up to O(u2) is sufficient to derive the Navier-Stokes equations:

f (eq) =
ρ

(2πθ)D/2
exp

[
−ξ2

2θ

]{
1 +

ξ · u
θ

+
(ξ · u)2

2θ2
− u2

2θ

}
+O(u3) . (7a)

f =
ρ

(2πθ)D/2
exp

[
−ξ2

2θ

] 2∑
n=0

1
n!

a(n)(x, t) : H(n)(ξ) , (7b)

where a(0) = 1, a(1) = u, a(2) = uu− (θ − 1)I, and {H(n)(ξ)} are
generalized Hermite polynomials.

1
X. He and L.-S. Luo, Phys. Rev. E 55:R6333 (1997).

2
X. Shan and X. He, Phys. Rev. Lett. 80:65 (1998).
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Discretization and Conservation Laws

The conservation laws are preserved exactly, if the hydrodynamic
moments (ρ, ρu, and ρε) are evaluated exactly:

I =
∫

ξmf (eq)dξ =
∫

exp(−ξ2/2θ)ψ(ξ)dξ, (8)

where 0 ≤ m ≤ 3, and ψ(ξ) is a polynomial in ξ. The above integral
can be evaluated by quadrature:

I =
∫

exp(−ξ2/2θ)ψ(ξ)dξ=
∑

j

Wj exp(−ξ2
j/2θ)ψ(ξj) (9)

where ξj and Wj are the abscissas and the weights. Then

ρ=
∑
α

f (eq)
α =

∑
α

fα, ρu=
∑
α

ξαf
(eq)
α =

∑
α

ξαfα, (10)

where fα ≡ fα(x, t) ≡Wαf(x, ξα, t), and f (eq)
α ≡Wαf

(eq)(x, ξα, t).

The quadrature must preserve the conservation laws exactly!
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Example: 9-bit LBE Model with Square Lattice

In two-dimensional Cartesian (momentum) space, set

ψ(ξ) = ξm
x ξ

n
y ,

the integral of the moments can be given by

I = (
√

2θ)(m+n+2)ImIn, Im =
∫ +∞

−∞
e−ζ2

ζmdζ, (11)

where ζ = ξx/
√

2θ or ξy/
√

2θ.
The second-order Hermite formula (k = 2) is the optimal choice to
evaluate Im for the purpose of deriving the 9-bit model, i.e.,

Im =
3∑

j=1

ωjζ
m
j .

Note that the above quadrature is exact up to m = 5 = (2k + 1).
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Discretization of Velocity ξ-Space (9-bit Model)

The three abscissas in momentum space (ζj) and the corresponding
weights (ωj) are:

ζ1 = −
√

3/2 , ζ2 = 0 , ζ3 =
√

3/2 ,
ω1 =

√
π/6 , ω2 = 2

√
π/3 , ω3 =

√
π/6 .

(12)

Then, the integral of moments becomes:

I = 2θ

[
ω2

2ψ(0) +
4∑

α=1

ω1ω2ψ(ξα) +
8∑

α=5

ω2
1ψ(ξα)

]
, (13)

where

ξα =


(0, 0) α = 0,
(±1, 0)

√
3θ, (0, ±1)

√
3θ, α = 1 – 4,

(±1, ±1)
√

3θ, α = 5 – 8.
(14)
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Discretization of Velocity ξ-Space (9-bit Model)

Identifying
Wα = (2π θ) exp(ξ2

α/2θ)wα , (15)

with c ≡ δx/δt =
√

3θ, or c2s = θ = c2/3, δx is the lattice constant, then:

f (eq)
α (x, t) = Wα f

(eq)(x, ξα, t)

= wα ρ

{
1 +

3(cα · u)
c2

+
9(cα · u)2

2c4
− 3u2

2c2

}
, (16)

where weight coefficient wα and discrete velocity cα are:

wα =


4/9,
1/9,
1/36,

cα = ξα =


(0, 0), α = 0 ,
(±1, 0) c, (0, ±1) c, α = 1 – 4,
(±1, ±1) c, α = 5 – 8.

(17)

With {cα|α = 0, 1, . . . , 8}, a square lattice structure is constructed in
the physical space.
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Discretization of Velocity ξ-Space

D2Q9 D3Q19

D3Q19 cubic lattice:

wα =


1/3,
1/18,
1/36,

cα =


(0, 0, 0), α = 0 ,
(±1, 0, 0) c, (0, ±1, 0) c, (0, 0, ±1) c, α = 1 – 6,
(±1, ±1, ±1) c, α = 7 – 18.
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LBE: Numerical Procedure

1 Choose particle velocity model
2 Given initial ρ0, u0

3 Calculate equilibrium distribution function

f (eq)
α (x, t) = wα ρ

{
1 +

3(cα · u)
c2

+
9(cα · u)2

2c4
− 3u2

2c2

}
4 Collision + Streaming

fα(x + cαδt, cα, t+ δt)− fα(x, cα, t) = −1
τ
[f(x, cα, t)− f (eq)(x, cα, t)]

5 Calculate ρ, u

ρ=
∑
α

fα, ρu=
∑
α

cαfα
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LBE Hydrodynamics: Chapman-Enskog Procedure

Performing Taylor expansion in time and space:

(∂t + cα · ∇)fα + ε
1
2
(∂t + cα · ∇)2fα =

1
ε
Ωα (18)

Chapman-Enskog expansion:
∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ . . .,

∂

∂x
= ε

∂

∂x1
, (19)

For distribution function:

fα = f (eq)
α + εf (neq)

α , f (neq)
α = f (1)

α + εf (2)
α +O(ε2) (20)

For collision operator,

Ωα(f) = Ωα(f (eq)) + ε
∂Ωα(f (eq))

∂fβ
f

(1)
β + ε2 (21)(

∂Ωα(f (eq))
∂fβ

f
(2)
β +

∂2Ωα(f (eq))
∂fβ∂fγ

f
(1)
β f (1)

γ

)
+O(ε3) .

Peng (Math Dept, ODU) LBE Nov 30, 2010 13 / 22



LBE Hydrodynamics: Chapman-Enskog Procedure

Order ε0

(∂t1 + cα · ∇1)f (eq)
α = −1

τ
f (1)

α (22)

Order ε1 [
∂t2 + (1− 2

τ
)∂t1 + cα · ∇1

]
f (1)

α = −f
(2)
α

τ
(23)

Constraints:∑
α

f (eq)
α = ρ

∑
α

f (k)
α = 0,

∑
α

cαf
(eq)
α = ρu

∑
α

cαf
(k)
α = 0 (24)

Hydrodynamical Equations:

∂tρ+ ∇ · (ρu) = 0 . (25a)
∂t(ρu) + ∇ ·Π = 0 . (25b)
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LBE Boundary Condition: Immersed Boundary Method

It uses the Cartesian mesh for the fluid.

Assuming the boundaries are immersed in the fluid.

Boundaries are represented by a set of boundary points.
(independent of grid points)
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Immersed Boundary Method

The immersed boundary moves at the local fluid velocity

Boundary deformation generates force based on constitutive law

This force is distributed into the flow field.

The interaction between the fluid and immersed boundary is
modeled by Dirac delta function.
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Immersed Boundary Method

Immersed boundary is not the computational boundary in the flow
solver. A singular force field is added in the governing equations.

Advantages:
Discrete equations of motion are identical at all mesh points.
(inside, outside or near the edge of boundary)

Boundary can have undergoing time-dependent motions

No need to generate grids each time
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Results

Sedimentation of one particle (movie)

History of particle y position History of translation velocity
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Results

Sedimentation of two particles (movie)
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Results

Particle transport in a converge-diverge channel (movie)
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Results

Deformation of biconcave capsule in shear flow (movie)
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Future work

Effect of membrane constitutive law and analyze the force on
capsule deformation.
Multiple capsules motion in microvessels.
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