Modeling and simulation of capsules using lattice

Boltzmann method

Yan Peng

Department of Mathematics and Statistics
Old Dominion University, Norfolk, Virginia 23529, USA
Email: ypeng@odu.edu

Peng (Math Dept, ODU) Nov 30, 2010


ypeng@odu.edu

Background
Numerical Methods

e Lattice Boltzmann method for fluid
o Immersed boundary method for capsules;

Numerical Results
Future Work

Peng (Math Dept, ODU)

Nov 30, 2010 2 /22



Background

Natural, artificial and biological capsules and cells abound in
nature, biology and technology.
Desirable properties:

o Ability to deform and accommodate the shapes of capillaries and
microchannels

e Ability to withstand the shearing action of an imposed flow

e Capacity to transport materials in a protect way and release it in a
timely fashion

Fundamental research is necessary: The flow-induced deformation
of liquid capsules in simple shear flow.
Difficulties:

e Deformable

e Strong fluid-structure interaction
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A Priori Derivation of Lattice Boltzmann Equation

The Boltzmann Equation with BGK approximation:

of + 6V = [Uifs~ hfddum —51f = £9), =@ & 0. ()

The Boltzmann-Maxwellian equilibrium distribution function:

7O = plant) PP exp [ -], @
The macroscopic quantities are the hydrodynamic moments of f or
FO,
o= [ rag= [ rode. (3a)
pu= [erae— [eroae, (30)
b=y [(e—wrrie =g [€-wirode. @)
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Integral Solution of Continuous Boltzmann Equation

Rewrite the Boltzmann BGK Equation in the form of ODE:
1 1 ©
th‘f‘xfzxf ; D=0 +§&V. (4)
Integrate Eq. (4) over a time step d; along characteristics:

flx+&6, & t+6) = f(z, & 1) (5)

I 5%
+Ae"t/A/ O (gt € t+ ) dt
Jo
By Taylor expansion, and with 7 = \/d;, we obtain:

f<w+€6La £> t+6L) - f(CU/ 57 t) = 7%[]0(337 53 t) - f((])(w> 57 t)] +O(6t2) .
(6)

Note that a finite-volume scheme or higher-order schemes can also be
formulated based upon the integral solution.
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Passage to Lattice Boltzmann Equation

Three necessary steps to derive LBE:!:2
@ Low Mach number expansion of the distribution functions;

@ Discretize &-space with necessary and min. number of &,;
@ Discretization of x space according to {&,}.

Low Mach Number (u ~ 0) Expansion of the distribution functions f
and f up to O(u?) is sufficient to derive the Navier-Stokes equations:

w _ P & Eu  (&-u)? W

I = Graypr Xp[ 29] {H T 29}+O( Y- (7a)

F= b en|- ﬁg}za% ) HD(E), (7h)
(270)P/2 20] —~

where a®) =1, a) = u, a® = wu — (6 — 1)I, and {H" (¢)} are
generalized Hermite polynomials.

1X. He and L.-S. Luo, Phys. Rev. E 55:R6333 (1997).

2X. Shan and X. He, Phys. Rev. Lett. 80:65 (1998).
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Discretization and Conservation Laws

The conservation laws are preserved exactly, if the hydrodynamic
moments (p, pu, and pe) are evaluated exactly:

1= / £ 0 g = / exp(—€2/20)1 (€)dE, (8)

where 0 < m < 3, and ¥(&) is a polynomial in £&. The above integral
can be evaluated by quadrature:

Iz/exp< €2/20)(€)de~ ZWexp —E2/20)0(&;)  (9)

where &; and W; are the abscissas and the weights. Then
p= Z (9= Z for pu—= Zsa (V= "&afar  (10)
where fo = fo(z, t) = Waf(2, €a, t), and féeq) = Wa e (x, &a, t).

The quadrature must preserve the conservation laws exactly!
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In two-dimensional Cartesian (momentum) space, set

(&) = &7y,

the integral of the moments can be given by

+0o0
[ = (V2B)m 2y, 1, I = / eCemdc, (1)

—00

where ( = &, /V/20 or &,/v26.
The second-order Hermite formula (k = 2) is the optimal choice to
evaluate I, for the purpose of deriving the 9-bit model, i.e.,

3
Im = w;(j"
j=1

Note that the above quadrature is ezxact up to m =5 = (2k + 1).
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The three abscissas in momentum space (;) and the corresponding
weights (w;) are:

_\/ﬁ7 G =0, G = \/3/727 (12)
:ﬁ/ﬁ, WQZQﬁ/g, W3:ﬁ/6.

Then, the integral of moments becomes:

I=20 |w3(0 +Zwm¢ ) +Zw/1 )| (13)
where
(0, 0) a=0,
€a =9 (£1,0)V30, (0, £1)v30, a=1-4, (14)
(1, £1)V/30, a=5-8
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Identifying
W, = (2 0) exp(€2/20) w,, (15)

with ¢ = 0,/6; = V30, or ¢ = 0 = ¢?/3, 6, is the lattice constant, then:
f&QQ)(m’ t) = W, f(EQ)(ma éon t)
o o 2 3 2
_ wap{1+3(c LIICTRC) “} (16)

c? 2¢t e

where weight coefficient w, and discrete velocity ¢, are:

4/9, (0, 0), a=0,
we =4 1/9, ca=& =4 (£1,0)¢, (0, £l)e, a=1-4, (17)
1/36, (£1, £1)ec, a=5-8.
With {c,|a =0, 1, ..., 8}, a square lattice structure is constructed in

the physical space.
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7 4 8 | /‘

-
D2Q9 D3Q19
D3Q19 cubic lattice:
1/3, (0, 0, 0), a=0,
we =4 1/18, ¢, =4 (£1,0,0)¢, (0, £1,0)¢, (0,0, £1)¢, a=1-6,
1/36, (1, £1, £1) ¢, a=7-18
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@ Choose particle velocity model
© Given initial pg, ug

@ Calculate equilibrium distribution function

3(cq - u) n 9(cy - u)? 37u2
c? 2¢t 2¢?

f&eq)(m7 t) = wa p {1 +

@ Collision + Streaming

fa(m + Ca(St, Ca, t+6t) - fa(ma Ca, t) = _%[f(mv Ca, t) - f(eq)(ma Ca, t)]

@ Calculate p, u

pZZfa, Puzzcafa
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Performing Taylor expansion in time and space:

1
(0 + € V) fo + 5 (at t+ea V) fa= 0 (18)
Chapman-Enskog expansion:
o_0 L0 90

For distribution function:
fo=fC0+eflea, fhea) = fM 4 efP 4 0(2)  (20)

For collision operator,

(eq)
Qulf) = u(s0) + 2220 i d(f D i 4. (21)
I3
OQa(f(eq)) (2) o Qa(f ) (1 3
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Order £° )
(01, + o 1) fLED =~ 240 (22)
Order &!
2 by
[@2 +(1— ;)8151 +ca- V1:| i = - (23)
Constraints:

SV =) S 20, Yeas D = pu Y eaf® =0 (24)

Hydrodynamical Equations:

op+V - (pu)=0. (25a)
O(pu) +V - 1I=0. (25b)
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Y el

o It uses the Cartesian mesh for the fluid.
@ Assuming the boundaries are immersed in the fluid.

@ Boundaries are represented by a set of boundary points.
(independent of grid points)
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@ The immersed boundary moves at the local fluid velocity
e Boundary deformation generates force based on constitutive law
e This force is distributed into the flow field.

o The interaction between the fluid and immersed boundary is
modeled by Dirac delta function.
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Immersed boundary is not the computational boundary in the flow
solver. A singular force field is added in the governing equations.

Advantages:

@ Discrete equations of motion are identical at all mesh points.
(inside, outside or near the edge of boundary)

o Boundary can have undergoing time-dependent motions

@ No need to generate grids each time
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Results

Sedimentation of one particle (movie)
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Results

Sedimentation of two particles (movie)

7F
FENG_P1X. = FENG_PIY
e FENG_P2Y
of * LBMPIY
o LBMP2Y
sF
> af
af
oF
n s L n L n 't L n s L
[ 1 7 3 ] 5 1 7 3 4
t t

08
= FENG_PIU
e FENG_P2U
= LBMPIU
08 o LBMP2U
04l
s02f
o8
0af
0af L N s L L
T 2 3 4 5

2010



Results

Particle transport in a converge-diverge channel (movie)
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Results

Deformation of biconcave capsule in shear flow (movie)

u = (ky, 0)
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Future work

o Effect of membrane constitutive law and analyze the force on
capsule deformation.

e Multiple capsules motion in microvessels.
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