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8 In¯nite Series

The main mathematical topic in this chapter is to determine the behavior of a given sequence (a
function de¯ned on n the natural numbers) as n!1: At ¯rst, one might think this question could
be easily answered by simply using a computer to calculate more and more terms. That this is not
the case will be demonstrated in many of the assignments in this chapter.

This chapter includes two laboratory assignments. The ¯rst assignment deals exclusively with

sequences, and explores the behavior of sequences de¯ned recursively, in particular the logistic
equation. In the second laboratory assignment, in¯nite series are the main topic. It is shown how
to consider an in¯nite series in terms of a sequence of partial sums.

8.1 Activity: Sequences

Prerequisite: Read Section 8.1 LHE.

This activity is intended to enhance your understanding of what it means for a sequence to converge.
In particular, you will explore the convergence of recursive sequences.

Instructions

After reading the comments and studying the worked example, open a blank Mathcad document
and create your report there. Remember to enter your team's name at the top of the document.
Upon completion of the assignment, enter the names of all team members who actively participated
in the assignment. Save your work frequently.

Comments

1. Earlier in this manual, we introduced Mathcad's literal subscripts, which are used for cosmetic
reasons, e.g., to introduce descriptive names like ytan (see Comment 1 in Section 2.1). In this
activity, we introduce Mathcad's numeric subscripts, which can be used to de¯ne sequences
of numbers. To produce such a subscript, use the xi button on the ¯rst palette strip, or

type the "[" (left bracket) key.

Example 1

Consider the sequence whose general term is an = n
7+n where n = 1; 2; : : :

(a) Tabulate the ¯rst ten terms of the sequence and then plot the points (n; an): Select
Symbol: +0s and Line: none from the Graph Format dialog box for the plot.

Solution
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(b) Plot the ¯rst 2000 terms of the sequence. Evaluate a100; a500; a1000 and a2000: What
does the limit of the sequence appear to be?

Solution
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=a100 0.935

=a500 0.986

=a1000 0.993

=a2000 0.997

The limit appears to be 1.

Example 2

Consider the sequence de¯ned by the recursion formula bn+1 = (bn + 1)1=3 where n = 1;2; : : : and
the starting input value is b1 = 0:2 . This formula gives the iterated sequence of terms b1; b2; b3; : : :
where the output value bn+1 of the n¡th iteration is the input for the (n+ 1)-st iteration.

(a) Tabulate the ¯rst 10 terms of the sequence and plot these terms against the index. What
does the limit of the sequence appear to be?

Solution
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(b) On the plot given here you will ¯nd three graphs. The graph of y = (x+1)1=3 is rendered
with a solid line, while the graph of y = x uses "dash-dot". The dotted "stair-step" path
begins at the point (b1; b1); then goes to the point (b1; b2); then (b2; b2); then (b2; b3); : : : ;
and then ¯nally to the point (b10; b11); since n = 1;2; : : : ; 10:
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Explain the relationship between this plot and the sequence in part (a).

Solution

The recursion formula for the sequence has the form bn+1 = f(bn) where f(x) = (x +
1)1=3: (Keep in mind that the output value bn+1 of the n-th iteration becomes the input
value for the (n+ 1)-st iteration, and that the starting input value is b1:)

The ¯rst vertical line segment from (b1; b1) to (b1; b2) corresponds to calculating b2 =
f(b1):Moving along the horizontal segment from (b1; b2) to the line y = x yields the point
(b2; b2): This locates the next input value b2: Then moving along the vertical segment
from (b2; b2) to (b2; b3) corresponds to calculating b3 = f(b2): This provides us with the
next input value b3: Continuing this procedure will generate the iterated sequence of
terms discussed in part (a).
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The "stair-step" path approaches the intersection of the line y = x and the function
f(x) = (x + 1)1=3: Therefore, the limit of the sequence must be a solution of x =
f(x). This also follows from the general observation that if a sequence converges, then
successive terms bn and bn+1 must get closer and closer in value as n gets large.

Problems

1. (a) Use Mathcad to de¯ne sequences an; bn; cn and dn from p.554 LHE for n = 1; : : : 100:

(b) De¯ne another range variable, say m, to take the values 1; 2; : : : ;10 and then tabulate
the ¯rst 10 terms of each sequence side by side. Observe that the ¯rst three terms of
these sequences are identical. Plot the four sequences against the index m on a single
graph. In the Graph Format dialog change Line to none, and set a di®erent symbol for
each sequence.

(c) Plot the ¯rst 100 terms of each sequence on a single graph (you may ¯rst want to copy
and paste the plot from part (b) ). Based only on this graph, what can you infer about
the convergence or divergence of each sequence, if anything?

(d) Copy and paste the graph from part (c), and zoom in to help distinguish between the
sequences which seem to converge. Based only on this graph, what can you infer about
the convergence of each sequence? For each sequence, evaluate some terms to estimate
the limit.

(e) By hand, determine the limit of each sequence. In each case, brie°y explain the reasoning
behind how you arrived at the answer. Check that your answers are consistent with your
conclusions in parts (c) and (d).

2. (a) In Example 2 (b) we observed that if a recursive sequence bn+1 = f(bn) converges to

a limit x, then x must be a solution of the equation x = f(x). Hence, the limit of
the convergent sequence discussed in Example 2 must be a solution of the equation
x = (x+1)1=3 . Let's verify this. Find an approximation to the solution to this problem
by plotting both sides of the equation and "zooming" in on the point of intersection.
From an initial guess based on your graph, use the root function to ¯nd a more accurate
solution. (Remember: Mathcad's root function ¯nds values where F (x) = 0. So, you
must create an appropriate F (x).) Have Mathcad display the solution value to ten
decimal places, and select Built-In Variables... from the Math menu to change the
value of TOL to 0.00001 (this will make the root function more accurate - see the footnote
on page 13). Comment on how this solution value compares with b10 in Example 2.

(b) Suppose we "reverse" the recursion formula of Example 2 to obtain the new recursion

formula bn = f(bn+1) = (bn+1 + 1)1=3: Notice that if this sequence converges to a limit
p; then p must be a solution of the same equation as in part (a), namely p = (p+1)1=3:
By hand, solve the equation bn = (bn+1 + 1)1=3 for bn+1 as an expression g(bn); and
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use the result to set up a recursion formula for the new sequence b1; b2; b3; : : : : Tabulate
the ¯rst ¯ve terms of the sequence, starting with b1 = 1:5: Does the sequence appear to
converge?

(c) Now create a "stair-step" plot corresponding to the sequence in part (b) by rendering
the plot of Example 2 (b), replacing (x+1)1=3 with the expression g(x) obtained in part
(b) de¯ned as a function of x. (Don't forget to de¯ne u = 0::1.) Change the value of x
to cover the interval [0;6], and restrict both the x and y axes to [0; 6].

(d) Observe that in part (c), the "stair-step" path moves away from the intersection of the
line y = x and the new function , whereas in Example 2(b), the path approaches the
intersection of y = x and the function f(x) = (x+ 1)1=3 . These opposite behaviors are

related to the magnitude of the slope of the functions at the point of intersection with
y = x. We won't go into the details here. Rather, evaluate the slope of the function f(x)
and compare to the slope of y = x at their point of intersection. Repeat for the function
g(x). How do you think the steepness of the function at the point of convergence is
related to the convergence of the iteration?

3. The "logistic model" of population growth is de¯ned by the recursion formula

Pn+1 = rPn(1¡ Pn)

where the value Pn is the population of the n-th generation, expressed as a fraction of the
maximum population. Di®erent values of the parameter r (between 0 and 4) represent dif-
ferent environments.

(a) By hand, ¯nd the non-zero limit of the logistic model by solving the equation x =
rx(1¡x) for x (i.e ¯nd x expressed in terms of r). In Mathcad, de¯ne a function xsol(r)
to be equal to this expression. Set r = 1:5 and de¯ne the sequence Pn for n = 1; 2; : : : ;100

with P1 = 0:5. Tabulate the 91st through the 100th terms of the sequence and make
sure the sequence is converging to xsol(r). Copy the plot you created in problem 2(c):
changing the sequence name and function as necessary, and de¯ne the range variable x

on [0,1]. Restrict both axes to [0,1], and if necessary, rede¯ne the index so that the plot
re°ects the ¯rst 100 terms of the sequence. You should be able to see the "stair-step"
path approach the intersection of the parabola and y = x.

(b) Copy your ENTIRE answer in part (a) onto the clipboard, and paste it three times
below. In the ¯rst copy, begin increasing the value of r by increments of 0.2 . Each time
after the document recalculates, observe that the sequence Pn converges to the new value
given by xsol(r) and that this convergence is exhibited by the plot. Continue increasing
r by 0.2 until you reach the value for which the sequence Pn no longer converges. STOP.

Notice that the sequence "oscillates" between two values.

(c) In the second copy you made, begin increasing the value of r starting at a value 0.1
bigger than the last value you used in part (b). Continue incrementing r by 0.1 until
the sequence begins to oscillate between four values. STOP.

(d) Finally, in the third copy you made, increase the value of r by 0.1 beyond the value
reached in part (c). You shouldn't have to wait very long to see a dramatic change in
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the behavior of the sequence: it becomes chaotic, with no indication of the sequence
approaching any values as n gets large.

(e) By hand, ¯nd the derivative of rx(1 ¡ x) with respect to x. Evaluate the derivative
at the point of convergence (In other words, evaluate the derivative when x = xsol(r).
This should give you an answer in terms of r only.). For which values of r is the slope
of the derivative, at the point of convergence, bigger than 1 in magnitude? How is this
related to the behavior of the sequence Pn observed above for various values of r ? (Note:
Problem 2(d) is related to this one.)

8.2 Activity: In¯nite Series

Prerequisites: Read Sections 8.2 - 8.10 LHE.

In this activity you will use Mathcad to numerically and graphically investigate the convergence of
in¯nite series. You will also learn how to use Mathcad to obtain Taylor polynomials. In addition,

you will investigate how the Taylor polynomial changes with the order, and with the center of
expansion.

Instructions

After reading the comments and studying the worked examples, open a blank Mathcad document
and create your report there. Remember to enter your team's name at the top of the document.
Upon completion of the assignment, enter the names of all team members who actively participated
in the assignment. Save your work frequently.

Comments

1. In this activity we focus on the concept of convergence of a partial sum sequence. Given the
sequence ai (i = 1;2; : : :) , the partial sum sequence Sn is de¯ned by the sum:

Sn =
nX

i=1

ai :

While we could use this de¯nition to compute Sn in Mathcad, in most cases we opt for a
more e±cient way of computing partial sums, based on the following recursive formula

Sn = Sn¡1 + an for all n ¸ 1 and S0 = 0:

By iterating this formula m times (and performing m additions in the process), we generate
the ¯rstm partial sums. On the other hand, using the de¯nition would require n¡1 additions
to obtain Sn; thus, obtaining the ¯rst m partial sums S1; : : : ; Sm would require

0 + 1 + 2 + : : :+ (m¡ 2) + (m¡ 1) =
(m¡ 1)m

2
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additions (we used the summation formula 2. of Theorem 4.2, p.260 LHE). For example, if
m = 1000; then the recursive formula requires 1000 additions, whereas the de¯nition requires
495,000 additions! (For most series, computation of ai values takes more time than does their
addition. With respect to this criterion, again, the recursive formula is far more e±cient.)

Example 1

(a) For x = 1, use a recursive assignment to de¯ne the ¯rst 50 partial sums of the in¯nite
series

1X
n=0

(¡1)nx2n

(2n)!

Tabulate the ¯rst 10 terms of the series along with the corresponding partial sums. Plot
these values on the same graph against the index.

Estimate the sum of the in¯nite series to 4 decimal place accuracy.

Solution

Note: We changed the global settings in the Numerical Format box (selected from the
Math menu):

¤ Displayed Precision: 15

¤ Exponential Threshold: 15

¤ Zero Tolerance: 15

The sum of the in¯nite series appears to be approximately 0.5403

(b) In Problem 3(b), you will prove that the in¯nite series of part (a) converges (i.e. has a
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"sum") for any number x. Thus, the in¯nite series de¯nes a function of x whose range
value is the sum of the in¯nite series corresponding to a given domain value x. Therefore,
the n-th partial sum should approximate this function with increasing accuracy as n

increases. What does the graph of this function look like for x on the interval [¡10; 10]?
What familiar function do you think it is?

Partial Solution

We plot the first four partial sums as functions of x  and restrict the y-range to obtain a useful picture. 
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Note: You are asked to complete the solution to this example in Problem 3.

Example 2

Obtain the 3rd degree Taylor polynomial P3(x) of sin(x) about the center c = 2. Graph P3(x) and

sin(x) on the same plot for x on the interval [¡1;5].

Solution

First obtain the 3rd degree Taylor polynomial of sin(x + 2) about c = 0. To do this, select the
variable x, then choose Expand to Series... and specify 4 as the Order of Approximation:
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sin( )x 2

converts to the series
   

sin( )2 .cos( )2 x ..1

2
sin( )2 x2 ..1

6
cos( )2 x3 O x4

Mathcad generates a Taylor series (discussed in Section 8.10 LHE), rather than a Taylor polynomial.
Thus, O(x4) is a symbol for all the terms of degree 4 and higher that were not included in the
series. Since we only want the 3rd degree Taylor polynomial, we should delete O(x4): When we do
this and use Substitute for Variable to replace x with x¡ 2, we obtain P3(x):
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Problems

1. (a) For r = 0:5, use a recursive assignment to de¯ne the ¯rst 101 partial sums of the
geometric series

1X
n=0

rn

(Note that S0 = 1 6= 0.) Tabulate and plot the terms of the series and the corresponding
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partial sums for n = 1;2; : : : ; 10: Follow the template of part (a) of Example 1, including
the global Numerical Format settings.

(b) Copy-and paste ¯ve copies of your entire answer to part (a) into your document. In the
¯rst copy, change the value of r to 0.9, in the second copy to 1, in the third to 1.5, in
the fourth to ¡0:5; and in the ¯fth to ¡1:

(c) Of the six geometric series in parts (a) and (b), identify the series for which divergence is
predicted solely on the basis of the n-th Term Test. For these series, can their divergence
also be inferred solely on the basis of the computed values of their partial sums obtained
in part (b)? Brie°y explain why.

(d) By hand or Mathcad, use the sum formula for a geometric series to obtain the exact
sum of each convergent geometric series in parts (a) and (b). For these series, compute

additional partial sums (say, S25; S50; S75; S100) to verify that they approach the exact
sum for large n.

2. (a) Position the pointer (the red cross) below your answer to the Problem 1. From the
File menu select Insert ...; then, in the dialog box, select the ¯le SERIES1.MCD (your
instructor will indicate which drive and directory should be selected). You will see the
rendering of the ¯rst ten partial sums of the geometric series of Problem 1(a). Notice
that on the graph on the right side, the arrows representing the terms of the series are
"stacked-up", and the horizontal axis represents r.

Change the value of r to each value speci¯ed in Problem 1(b), and watch how both
graphs are a®ected. Describe what you see.

(b) Copy the graph on the right side from the solution to part (a), and paste it below. Above
the copy you've just created, de¯ne: r := ¡1:5;¡1 :: 1:5 . You should understand that
your graph now depicts terms of the geometric series corresponding to seven di®erent
values of r. Now, rede¯ne r to be the range: ¡2;¡1:9 :: 2 . Resize the graph - make it
much wider. This time, forty-one geometric series are represented, each with di®erent
r. Click on the graph - you will see that six functions are plotted to generate the graph
(do not worry now about the technicalities involved in creating this graph - ask your
instructor later if you are interested). At the bottom of the list of functions plotted, add
the expression:

1

1¡ r

When you click the left mouse button outside the graph, this expression will be plotted

in black. Explain how this new graph is related to the rest of the picture.

3. This problem refers to the series in Example 1:

(a) Repeat part (a) of Example 1 for x = 10. In addition, tabulate the terms of the series
and the corresponding partial sums with n = 5; 10; : : : ; 50 and then plot these values on
the same graph for n = 1; 2; : : : ; 50. Estimate the sum of the in¯nite series to 4 decimal
place accuracy.
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(b) Using pencil and paper, apply an appropriate test for convergence in order to conclude
that the in¯nite series in part (a) is convergent for any value of x. Are the numer-
ical results obtained in part (a) of this problem and Example 1 consistent with this
conclusion?

(c) Plot the 12th,13th,14th and 15th partial sums against x.

(d) What familiar function do you think we are approximating, i.e., values of which function
do these partial sums appear to be converging towards? Verify that your guess agrees
with the numerical results obtained in part (a) of this problem and Example 1.

(e) The in¯nite series of Example 1(a), taken as a function of x; is actually a Taylor series.
Evaluate symbolically its fourth partial sum, written as:

3X
n=0

(¡1)nx2n

(2n)!

Now, type the function of x which you gave as the answer in part (d), have the blue box
contain x in this function, then from the Symbolic menu select Expand to Series....
Choose the appropriate value of "Order of Approximation" to obtain an exact match
with the polynomial that resulted from symbolically evaluating the fourth partial sum

above.

4. (a) Have Mathcad ¯nd the 8th Maclaurin polynomial for f(x) = 1

1¡x (see Example 2) and
de¯ne it as a function M8(x). Also, de¯ne M3(x) to be the third Maclaurin polynomial
for the same function (you may just copy a few terms from M8). Plot f(x), M3(x)
and M8(x) on the same graph, with x = ¡2;¡1:9; : : : ; 6 , making sure you select "trace
type" "draw" for f(x) so that the vertical asymptote is not rendered. Restrict the
vertical range to obtain a useful graph.

How does this graph compare to the ¯nal graph you obtained in Problem 2(b)?

Do our Maclaurin polynomials of order n appear to get closer and closer to f(x) as n
increases?

If your answer was yes, then do they get closer and closer to f(x) for all x, or only some

x values? (which ones?)

(b) Follow the procedure outlined in Example 2, to ¯nd the 8th Taylor polynomial for
f(x) = 1

1¡x centered at c = 3. (Remember, you must ¯rst type in the expression for
f(x + 3), expand it to a series with desired number of terms, and substitute x ¡ 3 for
x into the answer.) De¯ne this polynomial as a function T8(x). De¯ne T3(x) to be the
3rd Taylor polynomial for f(x) centered at the same c (again, you may just copy a few
terms from T8). Copy the graph from your answer to part (a), and paste it. Add the
functions T3(x) and T8(x) to the list of functions being plotted.

Do our Taylor polynomials centered at c = 3, appear to get closer and closer to f(x) as
n increases?

If your answer was yes, then do they get closer and closer to f(x) for all x, or only some

x values? (which ones?)
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5. (a) For n = 1;2; : : : ; 2000; create the partial sum sequences Sn; Tn; and Un for the following
series:

1X
n=1

1

n0:995

1X
n=1

1

n

1X
n=1

1

n1:005

Use a recursive assignment for the partial sums (see Comment 1 and Example 1(a)).

Create a range variable m=1000,1100..2000 and tabulate m, Sm, Tm and Um. From the
data, are you able to determine the behavior of any of the sequences?

(b) From your knowledge of p-series which, if any, of the series converge?

(c) Recall that (page 570 LHE)
Z n

1

f(x)dx ·
n¡1X
k=1

f(k) ·
nX

k=1

f(k) (i.e. the n-th partial sum

is greater than the integral value).

For each convergent series in part (a), use the symbolic processor to evaluate
Z n

1

f(x)dx:

Determine the limit (as n ! 1) of this integral. After 2000 terms, is the convergent
series close to this limit?

6. (a) Use Mathcad to show that the series
1X
n=2

(¡1)n

lnn
satis¯es the Alternating Series Test (page

582 LHE) and, therefore, is convergent.

(b) Use Theorem 8.15 (p. 584 LHE) to determine how many terms we need to take before
our partial sum approximates the exact sum of the series to 2 decimal places. (Use
Mathcad to do the arithmetic for this problem.)

(c) Suppose Mathcad can create 1000 terms in our partial sum sequence every second. How
long would it take Mathcad to calculate the number of terms needed in part (b)? Use

an appropriate unit of time measurement, e.g. seconds, hours, days etc.

8.3 Homework Help

² When solving exercises related to the convergence of sequences, you may want to use Mathcad
to illustrate your answers (using a table of values and/or a graph)

{ Exercises 35-54 p.557 LHE

{ Exercises 3-10 p.631 LHE

² You may try plotting and/or tabulating partial sums of the series, whose convergence/divergence
is to be discussed in these exercises:

{ Exercises 7-22, 41-52 p.566 LHE



Homework Help 97

{ Exercises 1-32 p.573 LHE

{ Exercises 1-26 p.579 LHE

{ Exercises 1-36 p.587 LHE

{ Exercises 5-24, 27-52 p.594 LHE

{ Exercises 27-36 p.632 LHE

² In exercises involving Taylor polynomials, try plotting the polynomial you obtained and the
original function on the same graph.

{ Exercises 1-20 p.604 LHE

{ Exercises 1-10 p.630 LHE
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9 Conic Sections

9.1 Homework Help

You can use the Maple template IMPLICIT.MS to sketch graphs of the various conic sections dis-
cussed in this chapter. Adjust the x and y ranges to view the region of interest to you.


